Независимые события — различия между версиями
Sultan (обсуждение | вклад) (→Примеры) |
(→Примеры) |
||
Строка 51: | Строка 51: | ||
<tex> \Leftarrow </tex>: | <tex> \Leftarrow </tex>: | ||
− | Допустим <tex>A</tex> является пустым множеством, тогда <tex> A \cap B = \emptyset</tex>. Значит <tex> | + | Допустим <tex>A</tex> является пустым множеством, тогда <tex> A \cap B = \emptyset</tex>. Значит <tex> p(A \cap B) = 0 </tex> и <tex> p(A) \cdot p(B) = 0</tex>. Следовательно события <tex>A</tex> и <tex>B</tex> являются независимыми. |
}} | }} | ||
Версия 00:10, 23 марта 2017
Определение: |
Два события A и B называются независимыми (independent), если |
Определение: |
Два события A и B называются несовместными (mutually exclusive), если |
Примеры
- Игральная кость
- вероятность выпадения чётной цифры
- вероятность выпадения одной из первых трёх цифр
Получаем, что
, значит эти события не независимы.- Карты
- вероятность выпадения карты заданной масти
- вероятность выпадения карты заданного достоинства
- вероятность выпадения карты заданной масти и заданного достоинства
Получаем, что
, значит эти события независимы.
Определение: |
События называются независимыми в совокупности, если для |
Определение: |
События | называются попарно независимыми, если для и - независимы.
Утверждение: |
Несовместные события и являются независимыми, тогда и только тогда если хотя бы одно из них является пустым множеством. |
: Если несовместные события являются независимыми, то выполняется . Также для несовместных событий выполняется . Следовательно . А это выполняется тогда и только тогда когда или .Допустим : является пустым множеством, тогда . Значит и . Следовательно события и являются независимыми. |
Замечание
Попарно независимые события и события, независимые в совокупности - это не одно и то же. Пример: тетраэдр Бернштейна. Рассмотрим правильный тетраэдр, три грани которого окрашены соответственно в красный, синий, зелёный цвета, а четвёртая грань содержит все три цвета. Событие А (соответственно, В, С) означает, что выпала грань, содержащая красный (соответственно, синий, зелёный) цвета.
Вероятность каждого из этих событий равна 1/2, так как каждый цвет есть на двух гранях из четырёх. Вероятность пересечения любых двух из них равна 1/4, так как только одна грань из четырёх содержит два цвета. А так как 1/4 = 1/2 · 1/2, то все события попарно независимы.
Но вероятность пересечения всех трёх тоже равна 1/4, а не 1/8, т.е. события не являются независимыми в совокупности.
Ссылки и источники
- Дискретный анализ, Романовский И. В.