Арифметические действия с формальными степенными рядами — различия между версиями
Penguinni (обсуждение | вклад) м (→Обратная) |
|||
Строка 1: | Строка 1: | ||
==Простейшие операции== | ==Простейшие операции== | ||
Рассмотрим два [[Производящая функция|формальных степенных ряда]] <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex>. | Рассмотрим два [[Производящая функция|формальных степенных ряда]] <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex>. | ||
− | + | {{Определение | |
− | ''Суммой'' <tex>A</tex> и <tex>B</tex> называется ряд <tex>A(s) + B(s) = (a_0 + b_0) + (a_1 + b_1) s + (a_2 + b_2) s^2 + \dots</tex>. | + | |definition = '''Суммой''' (англ. ''addition'') формальных степенных рядов <tex>A</tex> и <tex>B</tex> называется ряд <tex>A(s) + B(s) = (a_0 + b_0) + (a_1 + b_1) s + (a_2 + b_2) s^2 + \dots</tex>. |
− | + | }} | |
− | ''Произведением'' <tex>A</tex> и <tex>B</tex> называется ряд <tex>A(s)B(s) = a_0 b_0 + (a_0 b_1 + a_1 b_0) s + (a_0 b_2 + a_1 b_1 + a_2 b_0) s^2 + \dots</tex>. | + | {{Определение |
− | + | |definition = '''Произведением''' (англ. ''multiplication'') формальных степенных рядов <tex>A</tex> и <tex>B</tex> называется ряд <tex>A(s)B(s) = a_0 b_0 + (a_0 b_1 + a_1 b_0) s + (a_0 b_2 + a_1 b_1 + a_2 b_0) s^2 + \dots</tex>. | |
+ | }} | ||
Операции сложения и умножения формальных степенных рядов коммутативны и ассоциативны. | Операции сложения и умножения формальных степенных рядов коммутативны и ассоциативны. | ||
Строка 19: | Строка 20: | ||
Пусть <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex> {{---}} два формальных степенных ряда, причем <tex>B(0) = b_0 = 0</tex>. | Пусть <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex> {{---}} два формальных степенных ряда, причем <tex>B(0) = b_0 = 0</tex>. | ||
− | ''Композицией (подстановкой)'' рядов <tex>A</tex> и <tex>B</tex> называется | + | {{Определение |
− | + | |definition = | |
+ | '''Композицией (подстановкой)''' (англ. ''composition'') формальных степенных рядов <tex>A</tex> и <tex>B</tex> называется ряд <tex>A(B(t)) = a_0 + a_1 b_1 t + (a_1 b_2 + a_2 b_1^2) t^2 + (a_1 b_3 + 2 a_2 b_1 b_2 + a_3 b_1^3) t^3 + \dots</tex>. | ||
+ | }} | ||
Если, например, <tex>B(t) = -t</tex>, то <tex>A(B(t)) = A(-t) = a_0 -a_1 t + a_2 t^2 - a_3 t^3 + \dots</tex>. | Если, например, <tex>B(t) = -t</tex>, то <tex>A(B(t)) = A(-t) = a_0 -a_1 t + a_2 t^2 - a_3 t^3 + \dots</tex>. | ||
Строка 29: | Строка 32: | ||
|about = об обратном формальном степенном ряде | |about = об обратном формальном степенном ряде | ||
|statement = Пусть ряд <tex>B(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3 + \dots</tex> таков, что <tex>B(0) = b_0 = 0</tex>, а <tex>b_1 \ne 0</tex>. Тогда существуют такие ряды <tex> A(s) = a_1 s + a_2 s^2 + a_3 s^3 + \dots</tex>, <tex>A(0) = 0</tex> и <tex>C(u) = c_1 u + c_2 u^2 + c_3 u^3 + \dots</tex>, <tex>C(0) = 0</tex>, что <tex>A(B(t)) = t</tex> и <tex>B(C(u)) = u</tex>. При этом, ряды <tex>A</tex> и <tex>C</tex> единственны. | |statement = Пусть ряд <tex>B(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3 + \dots</tex> таков, что <tex>B(0) = b_0 = 0</tex>, а <tex>b_1 \ne 0</tex>. Тогда существуют такие ряды <tex> A(s) = a_1 s + a_2 s^2 + a_3 s^3 + \dots</tex>, <tex>A(0) = 0</tex> и <tex>C(u) = c_1 u + c_2 u^2 + c_3 u^3 + \dots</tex>, <tex>C(0) = 0</tex>, что <tex>A(B(t)) = t</tex> и <tex>B(C(u)) = u</tex>. При этом, ряды <tex>A</tex> и <tex>C</tex> единственны. | ||
− | + | ||
− | + | Производящие функции, соответствующие рядам <tex>A</tex> и <tex>C</tex>, называются соответственно '''левой''' и '''правой обратной''' (англ. ''left (right) inverse'') к производящей функции, соответствующей ряду <tex>B</tex>. | |
− | Производящие функции, соответствующие рядам <tex>A</tex> и <tex>C</tex>, называются соответственно '''левой''' и '''правой обратной''' к производящей функции, соответствующей ряду <tex>B</tex>. | ||
− | |||
|proof = | |proof = | ||
:Докажем существование и единственность левой обратной функции. Доказательство для правой обратной аналогично. | :Докажем существование и единственность левой обратной функции. Доказательство для правой обратной аналогично. | ||
:Будем определять коэффициенты ряда <tex>A</tex> последовательно. Коэффициент <tex>a_1</tex> определяется из условия <tex>a_1 b_1 = 1</tex>, откуда <tex>a_1 = \dfrac{1}{b_1}</tex>. | :Будем определять коэффициенты ряда <tex>A</tex> последовательно. Коэффициент <tex>a_1</tex> определяется из условия <tex>a_1 b_1 = 1</tex>, откуда <tex>a_1 = \dfrac{1}{b_1}</tex>. | ||
− | :Предположим теперь, что коэффициенты <tex>a_1, a_2, \dots, a_n</tex> уже определены. Коэффициент <tex>a_{n+1}</tex> определяется из условия <tex>a_{n+1} b_1^{n+1} + \dots = 0</tex>, где точками обозначен | + | :Предположим теперь, что коэффициенты <tex>a_1, a_2, \dots, a_n</tex> уже определены. Коэффициент <tex>a_{n+1}</tex> определяется из условия <tex>a_{n+1} b_1^{n+1} + \dots = 0</tex>, где точками обозначен некоторый многочлен от <tex>a_1, \dots, a_n</tex> и <tex>b_1, \dots, b_n</tex>. Тем самым, условие представляет собой линейное уравнение на <tex>a_{n+1}</tex>, причем коэффициент <tex>b_1^{n+1}</tex> при <tex>a_{n+1}</tex> отличен от нуля. Такое уравнение имеет единственное решение, и теорема доказана. |
}} | }} | ||
Версия 21:13, 23 мая 2017
Содержание
Простейшие операции
Рассмотрим два формальных степенных ряда и .
Определение: |
Суммой (англ. addition) формальных степенных рядов | и называется ряд .
Определение: |
Произведением (англ. multiplication) формальных степенных рядов | и называется ряд .
Операции сложения и умножения формальных степенных рядов коммутативны и ассоциативны.
Деление
Лемма (деление формальных степенных рядов): |
Пусть — формальный степенной ряд, причем . Тогда существует единственный формальный степенной ряд , такой что , то есть . |
Доказательство: |
|
Композиция
Пусть
и — два формальных степенных ряда, причем .
Определение: |
Композицией (подстановкой) (англ. composition) формальных степенных рядов | и называется ряд .
Если, например,
, то .Операция подстановки в случае, когда
, не определена. (При попытке подставить такой ряд возникает необходимость суммирования бесконечных числовых рядов).Обратная
Теорема (об обратном формальном степенном ряде): |
Пусть ряд таков, что , а . Тогда существуют такие ряды , и , , что и . При этом, ряды и единственны.
Производящие функции, соответствующие рядам и , называются соответственно левой и правой обратной (англ. left (right) inverse) к производящей функции, соответствующей ряду . |
Доказательство: |
|
См. также
Источники информации
- Ландо С. К., Лекции о производящих функциях. — 3-е изд., испр. — М.: МЦНМО, 2007. — 144с. ISBN 978-5-94057-042-4