Изменения

Перейти к: навигация, поиск

Разложение рациональной функции в ряд

1 байт добавлено, 10:52, 28 мая 2017
Общий алгоритм
==Общий алгоритм==
# Привести дробь <tex>\dfrac{P(z)}{Q(z)}</tex> к такому виду, чтобы степень числителя была меньше степени знаменателя.Если <tex>\deg(P) > \deg(Q)</tex>, то можем записать <tex>G(z)=\dfrac{P(z)}{Q(z)} = R(z)+\dfrac{P0(z)}{Q(z)}</tex>, где <tex>\deg(P0) < \deg(Q)</tex>.
# Разобьем знаменатель Q(z) на множители Q(z) = (zk-z)^k1 *..., где z1, z2, ..., zs - корни уравнения Q(z) = 0. При этом, k1+k2+⋅⋅⋅+ks=deg Q После разбиения знаменателя на множители получим: <tex>G(z)=\dfrac{P(z)}{(z1-z)^k1 *...(zs-z)^ks}</tex> (k1, ks - сделать индексами)
# Приведем G(z) к сумме дробей, знаменатели которых будут иметь вид (zj−z)^kj, а числители — полиномы Pj(z), причем deg Pj(z)<kj. <tex>G(z)=\dfrac{P(z)}{(z1-z)^k1 *...(zs-z)^ks} = \sum\limits \dfrac{Pj(z)}{(zj-z)^kj}</tex>. Найдем Pj(z) с помощью [[Разложение рациональной функции в ряд#Метод неопределенных коэффициентов|метода неопределенных коэффициентов]].
635
правок

Навигация