Алгоритм Форда-Фалкерсона, реализация с помощью поиска в глубину — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «Алгоритм Форда — Фалкерсона — алгоритм, решающий задачу нахождения максимального потока…»)
 
Строка 2: Строка 2:
  
 
== Идея ==
 
== Идея ==
Идея алгоритма заключается в следующем. Изначально величине потока присваивается значение 0: <tex> f(u,v) = 0 </tex> для всех <tex> u, v </tex> из <tex> V </tex>. Затем величина потока итеративно увеличивается посредством поиска увеличивающего пути (путь от источника s к стоку t, вдоль которого можно послать больший поток). Процесс повторяется, пока можно найти увеличивающий путь.
+
Идея алгоритма заключается в следующем. Изначально величине потока присваивается значение 0: <tex> f(u,v) = 0 </tex> для всех <tex> u, v </tex> из <tex> V </tex>. Затем величина потока итеративно увеличивается посредством поиска увеличивающего пути (путь от источника s к стоку t, вдоль которого можно послать больший поток). В данной статье рассматривается алгоритм, осуществляющий этот поиск с помощью [[Обход в глубину, цвета вершин|обхода в глубину (dfs)]]. Процесс повторяется, пока можно найти увеличивающий путь.
  
 
== См. также ==
 
== См. также ==
 
* [[Теорема Форда-Фалкерсона]]
 
* [[Теорема Форда-Фалкерсона]]

Версия 23:12, 21 декабря 2010

Алгоритм Форда — Фалкерсона — алгоритм, решающий задачу нахождения максимального потока в транспортной сети.

Идея

Идея алгоритма заключается в следующем. Изначально величине потока присваивается значение 0: [math] f(u,v) = 0 [/math] для всех [math] u, v [/math] из [math] V [/math]. Затем величина потока итеративно увеличивается посредством поиска увеличивающего пути (путь от источника s к стоку t, вдоль которого можно послать больший поток). В данной статье рассматривается алгоритм, осуществляющий этот поиск с помощью обхода в глубину (dfs). Процесс повторяется, пока можно найти увеличивающий путь.

См. также