Разложение рациональной функции в ряд — различия между версиями
(→Примеры) |
(→Примеры) |
||
| Строка 55: | Строка 55: | ||
<tex>B=-1</tex>,<br> | <tex>B=-1</tex>,<br> | ||
<tex>C=7</tex>. | <tex>C=7</tex>. | ||
| + | |||
| + | <center><tex> | ||
| + | \dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2} = | ||
| + | \dfrac{1}{1+z} + \dfrac{-z+7}{(1-z)^2}. | ||
| + | </tex></center> | ||
Версия 16:05, 28 мая 2017
Содержание
Определения
| Определение: |
| Рациональная функция — это функция вида:
, |
Рациональные производящие функции получаются при решении линейных рекуррентных соотношений. По этой причине актуальной является задача о разложении рациональной функции в ряд по степеням переменной .
Чтобы разложить дробь в ряд, необходимо разбить её на сумму элементарных дробей.
| Определение: |
| Элементарными дробями будем называть дроби вида:
, |
Затем, элементарные дроби сможем разложить в ряд, пользуясь формулами преобразования производящих функций и таблицей производящих функций.
Общий алгоритм
- Привести дробь к такому виду, чтобы степень числителя была меньше степени знаменателя. Если , то можем записать где .
- Отыскать корни уравнения и разбить знаменатель на множители вида (здесь — корень кратности ).
- Записать сумму дробей, знаменатили которых будут иметь вид , а числители — полиномы с неопределёнными коэффициентами, имеющие степень .
- Сложить выписанные дроби и сгруппировать слагаемые в числителе по степеням .
- Приравнять полученные выражения с неопределёнными коэффициентами к соответсвующим коэффициентам полинома , составив, таким образом, систему линейных уравнений.
- Решить систему и получить значения неопределённых коэффициентов.
Примеры
Разложить в ряд функциюПредставим функцию на сумму двух дробей, причем у первой в числителе будет полином степени , а у второй степени
где и — некоторые константы. Для того, чтобы найти эти константы, нужно сложить дроби:
Из последнего равенства, сравниваем коэффициенты при соответствующих степенях в числителе
- это коэффициент при ,
- это коэффициент при ,
- это коэффициент при .
Решая систему из трех уравнений, находим
,
,
.