Список заданий по ДМ 2к 2017 осень — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 18: Строка 18:
 
# Докажите, что для любого графа с $n$ вершинами, где $n \ge 4$, выполнено $\omega(G) \le n^2/4$.
 
# Докажите, что для любого графа с $n$ вершинами, где $n \ge 4$, выполнено $\omega(G) \le n^2/4$.
 
# Обозначим как $C_n$ цикл из $n$ вершин. Найдите $\omega(C_n)$.
 
# Обозначим как $C_n$ цикл из $n$ вершин. Найдите $\omega(C_n)$.
# Найдите $\omega(\overline{C_n})$.
+
# Найдите асимптотическое поведение $\omega(\overline{C_n})$.
 
# Колесом $C_n + K_1$ называется граф, состоящий из цикла, содержащего $n$ вершин, и еще одной вершины $u$, причем все вершины цикла соединены с $u$. Найдите $\omega(C_n + K_1)$.  
 
# Колесом $C_n + K_1$ называется граф, состоящий из цикла, содержащего $n$ вершин, и еще одной вершины $u$, причем все вершины цикла соединены с $u$. Найдите $\omega(C_n + K_1)$.  
 
</wikitex>
 
</wikitex>

Версия 16:44, 13 сентября 2017

<wikitex>

  1. Постройте граф с $n$ вершинами и $m$ ребрами. Здесь и далее "постройте граф с $n$ вершинами, ..." означает, что вы должны рассказать способ для любого $n$ построить искомый граф, либо рассказать, для каких $n$ такой граф существует и указать способ его построить, а для остальных $n$ доказать, что такого графа не существует. Аналогично следует поступить с другими параметрами, указанными в условии задачи.
  2. Обозначим как $N(u)$ множество соседей вершины $u$. Постройте граф с $n$ вершинами, в котором множества $N(u)$ совпадают для всех вершин $u$.
  3. Обозначим как $N[u]$ множество, содержащее вершину $u$, а также соседей вершины $u$. Постройте граф с $n$ вершинами, в котором множества $N[u]$ совпадают для всех вершин $u$.
  4. Постройте граф с $n$ вершинами, где каждая вершина имеет степень $d$.
  5. Докажите, что любой граф, содержащий хотя бы две вершины, имеет две вершины одинаковой степени.
  6. Обозначим как $\delta(G)$ минимальную степень вершины в графе, как $\Delta(G)$ - максимальную степень вершины в графе. Постройте граф с $n$ вершинами, в котором $\delta(G) + \Delta(G) > n$.
  7. Постройте двудольный граф с $n$ вершинами, в котором $\delta(G) + \Delta(G) > n$.
  8. Пусть для двудольного графа выполнено условие: для любой пары не соединенных ребром вершин есть вершина, связанная с обеими этими вершинами. Как устроен такой граф?
  9. Докажите, что для любого графа $G$ можно записать в каждой вершине $u$ такое число $d(u)$, что числа $d(u)$ и $d(v)$ имеют общий делитель, отличный от 1, тогда и только тогда, когда в графе $G$ есть ребро $uv$.
  10. Граф называется кубическим, если степень всех вершин равна 3. Три вершины графа образуют треугольник, если они попарно соединены ребром. Постройте кубический граф с $n$ вершинами, не содержащий треугольников.
  11. Граф называется самодополнительным, если он изоморфен своему дополнению. Приведите примеры самодополнительных графов с 4 и 5 вершинами. Докажите, что если граф является самодополнительным, то он содержит либо $4n$ либо $4n+1$ вершину для некоторого целого положительного $n$.
  12. Докажите, что для любого целого положительного $n$ существует самодополнительный граф, содержащий $4n$ вершин, а также самодополнительный граф, содержащий $4n+1$ вершину.
  13. Граф $G$ с $n$ вершинами называется графом пересечений, если можно найти такие множества $U_i$, $i$ от 1 до $n$, что вершины $i$ и $j$ связаны ребром тогда и только тогда, когда $U_i \cap U_j \ne \varnothing$. Докажите, что любой граф является графом пересечений.
  14. Числом пересечения графа $\omega(G)$ называется минимальная возможная мощность множества $S$, что граф $G$ является графом пересечений для множеств $U_i \subset S$. Опишите графы с $\omega(G) = 1$.
  15. Приведите пример графа с $\omega(G) = 2$.
  16. Приведите пример графа с $n$ вершинами, для которого $\omega(G) > n$.
  17. Докажите, что для любого графа с $n$ вершинами, где $n \ge 4$, выполнено $\omega(G) \le n^2/4$.
  18. Обозначим как $C_n$ цикл из $n$ вершин. Найдите $\omega(C_n)$.
  19. Найдите асимптотическое поведение $\omega(\overline{C_n})$.
  20. Колесом $C_n + K_1$ называется граф, состоящий из цикла, содержащего $n$ вершин, и еще одной вершины $u$, причем все вершины цикла соединены с $u$. Найдите $\omega(C_n + K_1)$.

</wikitex>