Теорема Татта о существовании регулярного графа заданного размера с заданным обхватом — различия между версиями
Строка 9: | Строка 9: | ||
|author = В. Татт | |author = В. Татт | ||
|about = о существовании регулярного графа заданного размера с заданным обхватом | |about = о существовании регулярного графа заданного размера с заданным обхватом | ||
− | |statement = Пусть <tex> k, g, n \in </tex> <tex> \mathbb{N} </tex>, причём <tex> k, n \geqslant 3, n > \dfrac{k(k-1)^{g-1} - 2}{k - 2}, kn </tex> чётно. Тогда существует <tex>k</tex> | + | |statement = Пусть <tex> k, g, n \in </tex> <tex> \mathbb{N} </tex>, причём <tex> k, n \geqslant 3, n > \dfrac{k(k-1)^{g-1} - 2}{k - 2}, kn </tex> чётно. Тогда существует <tex>k</tex>-[[Основные определения теории графов#defRegularGraph | регулярный граф]] <tex>G</tex> c обхватом <tex>g(G) = g</tex> и количеством вершин <tex> |V| = n</tex> |
|proof = Доказательство: | |proof = Доказательство: | ||
Пусть <tex>G_{set}(g, n, k)</tex> {{---}} семейство всех графов с <tex>n</tex> вершинами, обхватом <tex>g</tex> и максимальной степенью вершин не более <tex>k</tex>. При <tex>n > g</tex> очевидно, что <tex>G_{set}(g, n, k) \neq \emptyset</tex>: например, этому множеству принадлежит граф, состоящий из простого цикла на <tex>g</tex> вершинах и <tex>n - g</tex> изолированных вершин. | Пусть <tex>G_{set}(g, n, k)</tex> {{---}} семейство всех графов с <tex>n</tex> вершинами, обхватом <tex>g</tex> и максимальной степенью вершин не более <tex>k</tex>. При <tex>n > g</tex> очевидно, что <tex>G_{set}(g, n, k) \neq \emptyset</tex>: например, этому множеству принадлежит граф, состоящий из простого цикла на <tex>g</tex> вершинах и <tex>n - g</tex> изолированных вершин. | ||
Строка 50: | Строка 50: | ||
<center> <tex> dist_{<k}(G') \geqslant dist_{G'}(y, u) > dist_G(y, x) dist_{<k}(G) </tex> </center> | <center> <tex> dist_{<k}(G') \geqslant dist_{G'}(y, u) > dist_G(y, x) dist_{<k}(G) </tex> </center> | ||
− | Получили противоречие с принципом выбора графа <tex>G</tex>, что доказывает, что <tex>G</tex> {{---}} <tex>k</tex> | + | Получили противоречие с принципом выбора графа <tex>G</tex>, что доказывает, что <tex>G</tex> {{---}} <tex>k</tex>-регулярный. |
}} | }} | ||
Строка 60: | Строка 60: | ||
* Карпов В. Д. - Теория графов, стр 108 | * Карпов В. Д. - Теория графов, стр 108 | ||
− | [[Категория: | + | [[Категория: Алгоритмы и структуры данных]] |
− | [[Категория: | + | [[Категория: Обходы графов]] |
Версия 21:05, 16 ноября 2017
Определение: |
Обхват (англ. girth) графа | (обозначается ) — это длина наименьшего простого цикла в графе
Теорема (В. Татт, о существовании регулярного графа заданного размера с заданным обхватом): |
Пусть регулярный граф c обхватом и количеством вершин , причём чётно. Тогда существует - |
Доказательство: |
Доказательство: Пусть — семейство всех графов с вершинами, обхватом и максимальной степенью вершин не более . При очевидно, что : например, этому множеству принадлежит граф, состоящий из простого цикла на вершинах и изолированных вершин.Пусть — количество вершин степени меньше в графе , а — максимальное из расстояний между парами вершин степени менее в графе . (при , положим ). Выберем в граф следующим образом: сначала выберем все графы с максимальным количеством рёбер, затем из них выберем графы с максимальным , и, наконец, из оставшихся выберем граф c максимальным . Если таких графов несколько, выберем любой.Докажем, что — регулярный граф степени .Предположим, что это не так и рассмотрим пару его максимально удаленных вершин степени менее : пусть это будут вершины и (если вершина степени менее в графе всего одна, то ).
Пусть . ИзСледует, что
Докажем, что . Действительно, рассмотрим путь , который реализует расстояние между и в . Если проходит только по рёбрам , то, учитывая , получаемЗначит, проходит по ребру . Следовательно, содержит путь по рёбрам графа от до одной из вершин или и ребро . Тогдатак как . Таким образом |
См. также
Источники информации
- Карпов В. Д. - Теория графов, стр 108