Теорема о существовании совершенного паросочетания в графе, полученном из регулярного удалением ребёр — различия между версиями
(Новая страница: «{{Теорема |id = th_main. |author = J. Plesnik, 1972 |statement = Пусть <tex>G</tex> {{---}} <tex>k</tex>-[[Основные определения т...») |
|||
Строка 8: | Строка 8: | ||
Предположим, что в <tex>G'</tex> нет совершенного паросочетания, тогда выберем [[Теорема Татта о существовании полного паросочетания#Tutt_set | множество Татта]] <tex>S \subset V(G')</tex>, тогда <tex>odd(G' \subset S) > |S|</tex> | Предположим, что в <tex>G'</tex> нет совершенного паросочетания, тогда выберем [[Теорема Татта о существовании полного паросочетания#Tutt_set | множество Татта]] <tex>S \subset V(G')</tex>, тогда <tex>odd(G' \subset S) > |S|</tex> | ||
− | Так как <tex>|V(G)|</tex> чётно, то и <tex>odd(G' \setminus S) + |S|</tex> тоже чётно. Из этого следует, что <tex>odd(G' \setminus S) \equiv |S| \pmod 2 </tex>. Из этого факта и того, что <tex>odd(G' \setminus S) > |S|</tex> следует, что <tex>odd(G' \setminus S) \geqslant |S| + 2</tex> | + | Так как <tex>|V(G)|</tex> чётно, то и <tex>odd(G' \setminus S) + |S|</tex> тоже чётно. Из этого следует, что <tex>odd(G' \setminus S) \equiv |S| \pmod 2 </tex>. Из этого факта и того, что <tex>odd(G' \setminus S) > |S|</tex> следует, что <tex>odd(G' \setminus S) \geqslant |S| + 2 ~~~ \textbf{(1)}</tex> |
Пусть <tex>U_1, \cdot, U_n</tex> {{---}} нечётные компоненты связности <tex>G' \setminus S</tex>, тогда <tex>|odd(G' \setminus S)| = n</tex>, а <tex>U_{n+1}, \cdot, U_t</tex> {{---}} его чётные компоненты связности. Для каждого <tex>i \in [1 \cdots t]</tex> определим три величины: | Пусть <tex>U_1, \cdot, U_n</tex> {{---}} нечётные компоненты связности <tex>G' \setminus S</tex>, тогда <tex>|odd(G' \setminus S)| = n</tex>, а <tex>U_{n+1}, \cdot, U_t</tex> {{---}} его чётные компоненты связности. Для каждого <tex>i \in [1 \cdots t]</tex> определим три величины: | ||
Строка 22: | Строка 22: | ||
По лемме [[Совершенное паросочетание в кубическом графе#lemma1 | о сравнимости по модулю 2]] для нечётных компонент связности <tex>G' \setminus S</tex> (то есть <tex>i \in [1 \cdots n]</tex>) <tex>m_i \equiv k \pmod 2</tex>. | По лемме [[Совершенное паросочетание в кубическом графе#lemma1 | о сравнимости по модулю 2]] для нечётных компонент связности <tex>G' \setminus S</tex> (то есть <tex>i \in [1 \cdots n]</tex>) <tex>m_i \equiv k \pmod 2</tex>. | ||
− | <tex>m_i \geqslant \lambda(G) \geqslant k - 1</tex>. Из этого факта и того, что <tex>m_i \equiv k \pmod 2</tex> следует, что <tex>m_i \geqslant k</tex>. Отсюда получаем неравенство | + | <tex>m_i \geqslant \lambda(G) \geqslant k - 1</tex>. Из этого факта и того, что <tex>m_i \equiv k \pmod 2</tex> следует, что <tex>m_i \geqslant k</tex>. Отсюда получаем неравенство: |
+ | |||
+ | <tex>\sum\limits_1^n \alpha_i + \sum\limits_1^n \beta_i + \sum\limits_1^n \gamma_i \geqslant kn ~~~ \textbf{(2)}</tex> | ||
+ | |||
+ | Отметим два неравенства: | ||
+ | |||
+ | <tex>\sum\limits_1^t \alpha_i + \sum\limits_1^t \beta_i \leqslant k|S|</tex> | ||
+ | |||
+ | <tex>2 \sum\limits_1^t \beta_i + \sum\limits_1^t \gamma_i \leqslant 2|F| \leqslant 2k - 2</tex> | ||
+ | |||
+ | Сложив которые, получаем | ||
+ | |||
+ | <tex>\sum\limits_1^t \alpha_i + 3\sum\limits_1^t \beta_i + \sum\limits_1^n \gamma_i \leqslant k(|S| + 2) - 2 ~~~ \textbf{(3)}</tex> | ||
+ | |||
+ | Из неравенств <tex>\textbf{(2)}</tex> и <tex>\textbf{(3)}</tex> получаем, что <tex>kn \leqslant k(|S| + 2) - 2</tex>, и, следовательно, <tex>odd(G' \setminus S) = n < |S| + 2</tex>, что противоречит <tex>\textbf{(1)}</tex>. Таким образом, множество Татта найти нельзя, значит, в <tex>G'</tex> существует совершенное паросочетание. | ||
}} | }} | ||
+ | |||
+ | ==См. также== | ||
+ | * [[Совершенное паросочетание в кубическом графе]] | ||
+ | |||
+ | ==Источники информации== | ||
+ | * Карпов В. Д. - Теория графов, стр 43 | ||
+ | |||
+ | [[Категория: Алгоритмы и структуры данных]] | ||
+ | [[Категория: Задача о паросочетании]] |
Версия 14:26, 19 ноября 2017
Теорема (J. Plesnik, 1972): |
Пусть регулярный граф, с чётным числом вершин, причём , а граф получен из удалением не более рёбер. Тогда в графе есть совершенное паросочетание. — - |
Доказательство: |
Пусть , где , тогдаПредположим, что в множество Татта , тогда нет совершенного паросочетания, тогда выберемТак как чётно, то и тоже чётно. Из этого следует, что . Из этого факта и того, что следует, чтоПусть — нечётные компоненты связности , тогда , а — его чётные компоненты связности. Для каждого определим три величины:— количество рёбер из , соединяющих с , — количество рёбер из , соединяющих с , — количество рёбер из , соединяющих с остальными компонентами связности графа , тогда . Тогда — это количество рёбер графа , соединяющих с . По лемме о сравнимости по модулю 2 для нечётных компонент связности (то есть ) . . Из этого факта и того, что следует, что . Отсюда получаем неравенство:
Отметим два неравенства:
Сложив которые, получаем Из неравенств и получаем, что , и, следовательно, , что противоречит . Таким образом, множество Татта найти нельзя, значит, в существует совершенное паросочетание. |
См. также
Источники информации
- Карпов В. Д. - Теория графов, стр 43