Теорема о существовании совершенного паросочетания в графе, полученном из регулярного удалением ребёр — различия между версиями
Строка 26: | Строка 26: | ||
<tex>\sum\limits_{i=1}^n \alpha_i + \sum\limits_{i=1}^n \beta_i + \sum\limits_{i=1}^n \gamma_i \geqslant kn ~~~ \textbf{(2)}</tex> | <tex>\sum\limits_{i=1}^n \alpha_i + \sum\limits_{i=1}^n \beta_i + \sum\limits_{i=1}^n \gamma_i \geqslant kn ~~~ \textbf{(2)}</tex> | ||
− | Заметим, что все множества рёбер <tex>A_i</tex> и <tex>B_j</tex> не пересекаются и ведут во множество <tex>S</tex>. Поэтому сумма <tex>\sum\limits_{i=1}^t |A_i| + \sum\limits_{i=1}^t |B_i| = \sum\limits_{i=1}^t \alpha_i + \sum\limits_{i=1}^t \beta_i</tex> не превосходит суммарную степень вершин в <tex>S</tex>. Во множестве <tex>S</tex> находится всего <tex>|S|</tex> вершин, степень каждой не превосходит <tex>k</tex>. Поэтому суммарная степень вершин в <tex>S</tex> не превосходит <tex>k|S|</tex>. Отсюда получаем неравенство: | + | Заметим, что все множества рёбер <tex>A_i \subset E(G')</tex> и <tex>B_j \subset F</tex> не пересекаются(так как <tex>E(G') = E(G) \setminus F</tex>) и ведут во множество <tex>S</tex>. Поэтому сумма <tex>\sum\limits_{i=1}^t |A_i| + \sum\limits_{i=1}^t |B_i| = \sum\limits_{i=1}^t \alpha_i + \sum\limits_{i=1}^t \beta_i</tex> не превосходит суммарную степень вершин в <tex>S</tex>. Во множестве <tex>S</tex> находится всего <tex>|S|</tex> вершин, степень каждой не превосходит <tex>k</tex>. Поэтому суммарная степень вершин в <tex>S</tex> не превосходит <tex>k|S|</tex>. Отсюда получаем неравенство: |
<tex>\sum\limits_{i=1}^t \alpha_i + \sum\limits_{i=1}^t \beta_i \leqslant k|S| ~~~ \textbf{(3.1)}</tex> | <tex>\sum\limits_{i=1}^t \alpha_i + \sum\limits_{i=1}^t \beta_i \leqslant k|S| ~~~ \textbf{(3.1)}</tex> |
Версия 21:42, 19 ноября 2017
Теорема (J. Plesnik, 1972): |
Пусть регулярный граф, с чётным числом вершин, причём , а граф получен из удалением не более рёбер. Тогда в графе есть совершенное паросочетание. — - |
Доказательство: |
Пусть , где , тогдаПредположим, что в совершенного паросочетания., тогда выберем множество Татта , тогда нетТак как чётно, то и тоже чётно. Из этого следует, что . Из этого факта и того, что следует, чтоПусть — нечётные компоненты связности , тогда , а — его чётные компоненты связности. Для каждого определим три величины:— рёбра из , соединяющие с , — их количество, то есть — рёбра из , соединяющие с , — их количество, то есть — рёбра из , соединяющие с остальными компонентами связности графа , — их количество, то есть . Тогда определим . Тогда — это количество рёбер графа , соединяющих с .По лемме о сравнимости по модулю 2 для нечётных компонент связности (то есть ) . . Из этого факта и того, что следует, что . Отсюда получаем неравенство:
Заметим, что все множества рёбер и не пересекаются(так как ) и ведут во множество . Поэтому сумма не превосходит суммарную степень вершин в . Во множестве находится всего вершин, степень каждой не превосходит . Поэтому суммарная степень вершин в не превосходит . Отсюда получаем неравенство:
(так как ) Сложив которые, получаем Из неравенств и получаем, что , и, следовательно, , что противоречит . Таким образом, множество Татта найти нельзя, значит, в существует совершенное паросочетание. |
Следствия
Заметим, что Теорема Петерсона является следствием из этой теоремы, так как в графах Петерсена , , чётно и
Утверждение: |
Пусть регулярный граф, с чётным числом вершин, причём . Тогда для любого ребра существует совершенное паросочетание графа , содержащее . — - |
Пусть | , а — остальные рёбра, инцидентные вершине . Согласно теореме, в графе есть совершенное паросочетание . Так как покрывается , а — единственное ребро , инцидентное ,
См. также
Источники информации
- Карпов В. Д. - Теория графов, стр 43