<tex>\sum\limits_{i=1}^t \alpha_i + 3\sum\limits_{i=1}^t \beta_i + \sum\limits_{i=1}^t \gamma_i \leqslant k(|S| + 2) - 2 ~~~ \textbf{(3)}</tex>
Из Так как <tex>\sum\limits_{i=1}^n \alpha_i + \sum\limits_{i=1}^n \beta_i + \sum\limits_{i=1}^n \gamma_i \leqslant \sum\limits_{i=1}^t \alpha_i + \sum\limits_{i=1}^t \beta_i + \sum\limits_{i=1}^t \gamma_i \leqslant \sum\limits_{i=1}^t \alpha_i + 3\sum\limits_{i=1}^t \beta_i + \sum\limits_{i=1}^t \gamma_i</tex> из неравенств <tex>\textbf{(2)}</tex> и <tex>\textbf{(3)}</tex> получаем <tex>kn \leqslant k(|S| + 2) - 2</tex>
Тогда <tex>k(n - |S| - 2) \ \leqslant -2</tex>, следовательно, <tex>k(n - |S| - 2) \leqslant 0</tex>
<tex>k > 0</tex>, следовательно <tex>n - |S| - 2 \leqslant 0</tex>