Теорема о существовании совершенного паросочетания в графе, полученном из регулярного удалением ребёр — различия между версиями
Строка 32: | Строка 32: | ||
Заметим, что множества рёбер <tex>B_i</tex> и <tex>C_j</tex>, не пересекаются, так как <tex>B_i</tex> ведут из <tex>U_i</tex> в <tex>S</tex>, а <tex>C_j</tex> ведут из <tex>U_j</tex> в <tex>U_k</tex>, (<tex>k \neq j</tex>). Так как <tex>B_i \subset F</tex> и <tex>C_j \subset F</tex>, то сумма <tex>\sum\limits_{i=1}^t |B_i| + \sum\limits_{i=1}^t |C_i| = \sum\limits_{i=1}^t \beta_i + \sum\limits_{i=1}^t \gamma_i</tex> не превосходит мощности <tex>F</tex>, откуда имеем: | Заметим, что множества рёбер <tex>B_i</tex> и <tex>C_j</tex>, не пересекаются, так как <tex>B_i</tex> ведут из <tex>U_i</tex> в <tex>S</tex>, а <tex>C_j</tex> ведут из <tex>U_j</tex> в <tex>U_k</tex>, (<tex>k \neq j</tex>). Так как <tex>B_i \subset F</tex> и <tex>C_j \subset F</tex>, то сумма <tex>\sum\limits_{i=1}^t |B_i| + \sum\limits_{i=1}^t |C_i| = \sum\limits_{i=1}^t \beta_i + \sum\limits_{i=1}^t \gamma_i</tex> не превосходит мощности <tex>F</tex>, откуда имеем: | ||
− | <tex>2 \sum\limits_{i=1}^t \beta_i + \sum\limits_{i=1}^t \gamma_i \leqslant 2|F| \leqslant 2k - 2 ~~~ \textbf{(3. | + | <tex>2 \sum\limits_{i=1}^t \beta_i + \sum\limits_{i=1}^t \gamma_i \leqslant 2|F| \leqslant 2k - 2 ~~~ \textbf{(3.2)}</tex> (так как <tex>|F| \leqslant k - 1</tex>) |
Сложив <tex>\textbf{(3.1)}</tex> и <tex>\textbf{(3.2)}</tex>, получаем | Сложив <tex>\textbf{(3.1)}</tex> и <tex>\textbf{(3.2)}</tex>, получаем |
Версия 22:03, 19 ноября 2017
Теорема (J. Plesnik, 1972): |
Пусть регулярный граф, с чётным числом вершин, причём , а граф получен из удалением не более рёбер. Тогда в графе есть совершенное паросочетание. — - |
Доказательство: |
Пусть , где , тогдаПредположим, что в совершенного паросочетания., тогда выберем множество Татта , тогда нетТак как чётно, то и тоже чётно. Из этого следует, что . Из этого факта и того, что следует, чтоПусть в графе всего компонент связности, из которых нечётны. Тогда пусть — нечётные компоненты связности , тогда , а — его чётные компоненты связности. Для каждого определим три величины:— рёбра из , соединяющие с , — их количество, то есть — рёбра из , соединяющие с , — их количество, то есть — рёбра из , соединяющие с остальными компонентами связности графа , — их количество, то есть . Тогда определим . Тогда — это количество рёбер графа , соединяющих с .По лемме о сравнимости по модулю 2 для нечётных компонент связности (то есть ) . . Из этого факта и того, что следует, что . Отсюда получаем неравенство:
Заметим, что все множества рёбер и не пересекаются(так как ) и ведут во множество . Поэтому сумма не превосходит суммарную степень вершин в . Во множестве находится всего вершин, степень каждой не превосходит . Поэтому суммарная степень вершин в не превосходит . Отсюда получаем неравенство:
Заметим, что множества рёбер и , не пересекаются, так как ведут из в , а ведут из в , ( ). Так как и , то сумма не превосходит мощности , откуда имеем:(так как ) Сложив и , получаем
Так как из неравенств и получаемТогда , следовательно,и, следовательно, , следовательно , что противоречит . Таким образом, множество Татта найти нельзя, значит, в существует совершенное паросочетание. |
Следствия
Заметим, что Теорема Петерсона является следствием из этой теоремы, так как в графах Петерсена , , чётно и
Утверждение: |
Пусть регулярный граф, с чётным числом вершин, причём . Тогда для любого ребра существует совершенное паросочетание графа , содержащее . — - |
Пусть | , а — остальные рёбра, инцидентные вершине . Согласно теореме, в графе есть совершенное паросочетание . Так как покрывается , а — единственное ребро , инцидентное ,
См. также
Источники информации
- Карпов В. Д. - Теория графов, стр 43