Независимые случайные величины — различия между версиями
Строка 3: | Строка 3: | ||
== Примеры == | == Примеры == | ||
− | Рассмотрим вероятностное пространство честная игральная кость. <math>\Omega</math> = {1, 2, 3, 4, 5, 6}. <math>\xi</math> и <math>\eta</math> - случайные величины. <math>\xi</math>(i) = i % 2, <math>\eta</math>(i) = [i <math>\geqslant</math> 4]. Пусть <math>\alpha</math> = 0, <math>\beta</math> = 0. Тогда P(<math>\xi \leqslant</math> 0) = 1/2, P(<math> | + | Рассмотрим вероятностное пространство честная игральная кость. <math>\Omega</math> = {1, 2, 3, 4, 5, 6}. <math>\xi</math> и <math>\eta</math> - случайные величины. <math>\xi</math>(i) = i % 2, <math>\eta</math>(i) = [i <math>\geqslant</math> 4]. Пусть <math>\alpha</math> = 0, <math>\beta</math> = 0. Тогда P(<math>\xi \leqslant</math> 0) = 1/2, P(<math>\eta \leqslant</math> 0) = 1/2, P((<math>\xi \leqslant</math> 0)<math>\cap</math>(<math>\eta \leqslant</math> 0)) = 1/4. Эти события независимы, а значит случайные величины <math>\xi</math> и <math>\eta</math> независимы. |
Версия 23:32, 23 декабря 2010
Независимые случайные величины -
и называются независимыми, если для и события и независимы.Примеры
Рассмотрим вероятностное пространство честная игральная кость.
= {1, 2, 3, 4, 5, 6}. и - случайные величины. (i) = i % 2, (i) = [i 4]. Пусть = 0, = 0. Тогда P( 0) = 1/2, P( 0) = 1/2, P(( 0) ( 0)) = 1/4. Эти события независимы, а значит случайные величины и независимы.