Материал из Викиконспекты
|
|
Строка 6: |
Строка 6: |
| }} | | }} |
| {{Определение | | {{Определение |
− | |definition='''Минимальный по включению [[Декомпозиция Эдмондса-Галлаи#def1 | барьер]] ''' {{---}} барьер минимальной мощности | + | |definition='''Минимальный по включению [[Декомпозиция Эдмондса-Галлаи#def2 | барьер]] ''' {{---}} барьер минимальной мощности |
| }} | | }} |
| | | |
Строка 28: |
Строка 28: |
| Тогда <tex>\mathrm{odd}(G\setminus B')\ \geqslant |B| - 1 + \mathrm{def}(G)</tex><br> | | Тогда <tex>\mathrm{odd}(G\setminus B')\ \geqslant |B| - 1 + \mathrm{def}(G)</tex><br> |
| То есть <tex>\mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G)</tex><br> | | То есть <tex>\mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G)</tex><br> |
| + | Тогда, если выполняется равенство <tex>\mathrm{odd}(G\setminus B') - |B'|\ = \mathrm{def}(G)</tex>, то, по определению <tex>B'</tex> является барьером. <br> |
| + | Но <tex>|B'| < |B| </tex>, а значит, <tex>B</tex> не является минимальным по включению барьером <tex>\Rightarrow</tex> противоречие условию. <br> |
| + | Если <tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G)</tex>, то <br> |
| + | <tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G) = \mathrm{odd}(G\setminus B) - |B|\</tex>, что противоречит [[Декомпозиция Эдмондса-Галлаи#def1 | теореме Бержа]]. <br> |
| }} | | }} |
Версия 21:56, 13 декабря 2017
Определение: |
Лапой называется индуцированный подграф графа [math]G[/math], изоморфный двудольному графу [math]K_{1,\;3}[/math] |
Определение: |
Центр лапы — вершина степени 3 в лапе |
Определение: |
Минимальный по включению барьер — барьер минимальной мощности |
Теорема: |
Пусть [math]B[/math] - минимальный по включению барьер [math]G[/math], тогда каждая вершина [math]B[/math] - центр лапы в [math]G[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Пусть [math]x\in B[/math] не является центром лапы. Тогда [math]x[/math] смежна не более чем с двумя компонентами связности графа [math]G \setminus B[/math].
Обозначим [math]B' = B\setminus x[/math]
Найдём соотношение между [math]\mathrm{odd}(G\setminus B')\ [/math] и [math]\mathrm{odd}(G\setminus B)\ [/math]
Рассмотрим возможные случаи количества компонент связности в [math]G \setminus B[/math], с которыми смежна [math]x[/math], и посмотрим на их четности(компоненты в [math]B[/math] нас не интересуют)
- [math]x[/math] смежна с двумя компонентами связности [math]G \setminus B[/math].
- a) Одна четная, другая - нечетная. Тогда [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math]
- b) Обе чётные : [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math]
- c) Обе нечётные : [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math]
- [math]x[/math] смежна с одной компонентой связности [math]G \setminus B[/math].
- a) Она чётная : [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math]
- b) Она нечётная : [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math]
- [math]x[/math] не смежна ни с какой компонентой связности [math]G \setminus B[/math] : [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math]
Рассмотрев случаи, видим, что для любого из них выполнено : [math]\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ + 1 [/math]
[math]B[/math] — барьер [math] \Leftrightarrow \mathrm{odd}(G\setminus B) - |B| = \mathrm{def}(G) [/math]
Тогда [math]\mathrm{odd}(G\setminus B')\ \geqslant |B| - 1 + \mathrm{def}(G)[/math]
То есть [math]\mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G)[/math]
Тогда, если выполняется равенство [math]\mathrm{odd}(G\setminus B') - |B'|\ = \mathrm{def}(G)[/math], то, по определению [math]B'[/math] является барьером.
Но [math]|B'| \lt |B| [/math], а значит, [math]B[/math] не является минимальным по включению барьером [math]\Rightarrow[/math] противоречие условию.
Если [math]\mathrm{odd}(G\setminus B') - |B'|\ \gt \mathrm{def}(G)[/math], то
[math]\mathrm{odd}(G\setminus B') - |B'|\ \gt \mathrm{def}(G) = \mathrm{odd}(G\setminus B) - |B|\[/math], что противоречит теореме Бержа. |
[math]\triangleleft[/math] |