Лапы и минимальные по включению барьеры в графе — различия между версиями
Строка 27: | Строка 27: | ||
{{Теорема | {{Теорема | ||
|id=th1 | |id=th1 | ||
− | |statement=Пусть <tex>B</tex> {{---}} минимальный по включению барьер <tex>G</tex>, тогда каждая вершина <tex>B</tex> {{---}} центр лапы в <tex>G</tex>. | + | |statement=Пусть <tex>B</tex> {{---}} минимальный по включению барьер графа<tex>G</tex>, тогда каждая вершина <tex>B</tex> {{---}} центр лапы в <tex>G</tex>. |
|proof=Пусть <tex>x\in B</tex> не является центром лапы. Тогда <tex>x</tex> смежна не более чем с двумя компонентами связности графа <tex>G \setminus B</tex>.<br> | |proof=Пусть <tex>x\in B</tex> не является центром лапы. Тогда <tex>x</tex> смежна не более чем с двумя компонентами связности графа <tex>G \setminus B</tex>.<br> | ||
Обозначим <tex>B' = B\setminus x</tex>.<br> | Обозначим <tex>B' = B\setminus x</tex>.<br> | ||
Найдём соотношение между [[Теорема Татта о существовании полного паросочетания#odd | <tex>\mathrm{odd}</tex>]]<tex>(G\setminus B')\ </tex> и <tex>\mathrm{odd}(G\setminus B)\ </tex>. <br> | Найдём соотношение между [[Теорема Татта о существовании полного паросочетания#odd | <tex>\mathrm{odd}</tex>]]<tex>(G\setminus B')\ </tex> и <tex>\mathrm{odd}(G\setminus B)\ </tex>. <br> | ||
− | Для этого рассмотрим | + | Для этого рассмотрим всевозможные случаи количества компонент связности в графе <tex>G \setminus B</tex>, с которыми смежна <tex>x</tex>, и посмотрим на их четности (компоненты в <tex>B</tex> нас не интересуют).<br> |
− | # <tex>x</tex> смежна с двумя компонентами связности <tex>G \setminus B</tex>.[[Файл:GraphsForLaps.png|300px|thumb|right|<tex>x</tex> смежна с двумя компонентами связности из <tex>G \setminus B</tex>]]<br> | + | # <tex>x</tex> смежна с двумя компонентами связности графа <tex>G \setminus B</tex>.[[Файл:GraphsForLaps.png|300px|thumb|right|<tex>x</tex> смежна с двумя компонентами связности из <tex>G \setminus B</tex>]]<br> |
− | #:a) Одна четная, другая - нечетная. Тогда <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | + | #:a) Одна компонента четная, другая {{---}} нечетная. Тогда <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> |
− | #:b) Обе чётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> | + | #:b) Обе компоненты чётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> |
− | #:c) Обе нечётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | + | #:c) Обе компоненты нечётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> |
− | #<tex>x</tex> смежна с одной компонентой связности <tex>G \setminus B</tex>.<br> | + | #<tex>x</tex> смежна с одной компонентой связности графа <tex>G \setminus B</tex>.<br> |
#:a) Она чётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> | #:a) Она чётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> | ||
#:b) Она нечётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | #:b) Она нечётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | ||
− | # <tex>x</tex> не смежна ни с какой компонентой связности <tex>G \setminus B</tex>: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> | + | # <tex>x</tex> не смежна ни с какой компонентой связности графа <tex>G \setminus B</tex>: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> |
Рассмотрев случаи, видим, что для любого из них выполнено: <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | Рассмотрев случаи, видим, что для любого из них выполнено: <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | ||
<tex>B</tex> {{---}} барьер <tex> \Leftrightarrow \mathrm{odd}(G\setminus B) - |B| = \mathrm{def}(G) </tex> <br> | <tex>B</tex> {{---}} барьер <tex> \Leftrightarrow \mathrm{odd}(G\setminus B) - |B| = \mathrm{def}(G) </tex> <br> |
Версия 00:22, 15 декабря 2017
Определение:
Лапой (англ. paw) называется индуцированный подграф графа изоморфный двудольному графу .
,
Определение:
Центром лапы (англ. paw center) называется вершина степени три в лапе.
Определение:
Минимальный по включению барьер (англ.minimum barrier) — барьер минимальной мощности.
Теорема: |
Пусть — минимальный по включению барьер графа , тогда каждая вершина — центр лапы в . |
Доказательство: |
Пусть
Рассмотрев случаи, видим, что для любого из них выполнено:
|
Утверждение (D.P.Sumner, M.Las Vergnas, следствие из теоремы): |
Пусть совершенное паросочетание. — связный граф, не содержащий лапы, чётно. Тогда имеет |
Пусть |
См. также
- Декомпозиция Эдмондса-Галлаи
- Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях
- Теорема Татта о существовании полного паросочетания
Источники информации
- Карпов В. Д. - Теория графов, стр 55