Лапы и минимальные по включению барьеры в графе — различия между версиями
Строка 2: | Строка 2: | ||
|id = paw | |id = paw | ||
|neat = 1 | |neat = 1 | ||
− | |definition='''Лапой''' (англ. ''paw'') называется индуцированный подграф графа <tex>G</tex>, [[Основные определения теории графов#isomorphic_graphs | изоморфный]] [[Основные определения теории графов#defBiparateGraph | двудольному]] графу <tex>K_{1,\;3}</tex>. | + | |definition = '''Лапой''' (англ. ''paw'') называется индуцированный подграф графа <tex>G</tex>, [[Основные определения теории графов#isomorphic_graphs | изоморфный]] [[Основные определения теории графов#defBiparateGraph | двудольному]] графу <tex>K_{1,\;3}</tex>. |
}} [[Файл:Lapa.png|180px|thumb|right|Лапа]] | }} [[Файл:Lapa.png|180px|thumb|right|Лапа]] | ||
Строка 13: | Строка 13: | ||
|id = paw_center | |id = paw_center | ||
|neat = 1 | |neat = 1 | ||
− | |definition='''Центром лапы''' (англ. ''paw center'') называется вершина [[Основные определения теории графов#def_graph_degree_1| степени]] три в лапе. | + | |definition ='''Центром лапы''' (англ. ''paw center'') называется вершина [[ Основные определения теории графов#def_graph_degree_1 | степени ]] три в лапе. |
}} | }} | ||
Строка 23: | Строка 23: | ||
|neat = 1 | |neat = 1 | ||
|id = minimum_barrier | |id = minimum_barrier | ||
− | |definition='''Минимальным по включению [[Декомпозиция Эдмондса-Галлаи#barrier | барьером]] '''(англ.''minimum barrier'') называется барьер минимальной мощности. | + | |definition = '''Минимальным по включению [[ Декомпозиция Эдмондса-Галлаи#barrier | барьером]] '''(англ.''minimum barrier'') называется барьер минимальной мощности. |
}} | }} | ||
Строка 31: | Строка 31: | ||
{{Теорема | {{Теорема | ||
− | |id=theorem1 | + | |id = theorem1 |
|statement=Пусть <tex>B</tex> {{---}} минимальный по включению барьер графа <tex>G</tex>, тогда каждая вершина <tex>B</tex> {{---}} центр лапы в <tex>G</tex>. | |statement=Пусть <tex>B</tex> {{---}} минимальный по включению барьер графа <tex>G</tex>, тогда каждая вершина <tex>B</tex> {{---}} центр лапы в <tex>G</tex>. | ||
− | |proof=Пусть <tex>x\in B</tex> не является центром лапы. Тогда <tex>x</tex> смежна не более чем с двумя компонентами связности графа <tex>G \setminus B</tex>.<br> | + | |proof=Пусть <tex>x\in B</tex> не является центром лапы. Тогда <tex>x</tex> смежна не более чем с двумя компонентами связности графа <tex>G \setminus B</tex>. <br> |
Введём обозначение <tex>B' = B\setminus x</tex>.<br> | Введём обозначение <tex>B' = B\setminus x</tex>.<br> | ||
Найдём соотношение между [[Теорема Татта о существовании полного паросочетания#odd | <tex>\mathrm{odd}</tex>]]<tex>(G\setminus B')\ </tex> и <tex>\mathrm{odd}(G\setminus B)\ </tex>. <br> | Найдём соотношение между [[Теорема Татта о существовании полного паросочетания#odd | <tex>\mathrm{odd}</tex>]]<tex>(G\setminus B')\ </tex> и <tex>\mathrm{odd}(G\setminus B)\ </tex>. <br> | ||
Для этого рассмотрим всевозможные случаи количества компонент связности в графе <tex>G \setminus B</tex>, с которыми смежна <tex>x</tex>, и посмотрим на их четности (компоненты в <tex>B</tex> нас не интересуют).<br> | Для этого рассмотрим всевозможные случаи количества компонент связности в графе <tex>G \setminus B</tex>, с которыми смежна <tex>x</tex>, и посмотрим на их четности (компоненты в <tex>B</tex> нас не интересуют).<br> | ||
# <tex>x</tex> смежна с двумя компонентами связности графа <tex>G \setminus B</tex>.[[Файл:GraphsForLaps.png|300px|thumb|right|<tex>x</tex> смежна с двумя компонентами связности из <tex>G \setminus B</tex>]]<br> | # <tex>x</tex> смежна с двумя компонентами связности графа <tex>G \setminus B</tex>.[[Файл:GraphsForLaps.png|300px|thumb|right|<tex>x</tex> смежна с двумя компонентами связности из <tex>G \setminus B</tex>]]<br> | ||
− | #:a) Одна компонента четная, другая {{---}} нечетная. Тогда <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | + | #: a) Одна компонента четная, другая {{---}} нечетная. Тогда <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> |
− | #:b) Обе компоненты чётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> | + | #: b) Обе компоненты чётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> |
− | #:c) Обе компоненты нечётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | + | #: c) Обе компоненты нечётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> |
#<tex>x</tex> смежна с одной компонентой связности графа <tex>G \setminus B</tex>.<br> | #<tex>x</tex> смежна с одной компонентой связности графа <tex>G \setminus B</tex>.<br> | ||
− | #:a) Она чётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> | + | #: a) Она чётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> |
− | #:b) Она нечётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | + | #: b) Она нечётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> |
# <tex>x</tex> не смежна ни с какой компонентой связности графа <tex>G \setminus B</tex>: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> | # <tex>x</tex> не смежна ни с какой компонентой связности графа <tex>G \setminus B</tex>: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> | ||
Рассмотрев случаи, видим, что для любого из них выполнено: <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | Рассмотрев случаи, видим, что для любого из них выполнено: <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> |
Версия 01:25, 15 декабря 2017
Определение:
Лапой (англ. paw) называется индуцированный подграф графа изоморфный двудольному графу .
,
Определение:
Центром лапы (англ. paw center) называется вершина степени три в лапе.
Определение:
Минимальным по включению барьером (англ.minimum barrier) называется барьер минимальной мощности.
Теорема: |
Пусть — минимальный по включению барьер графа , тогда каждая вершина — центр лапы в . |
Доказательство: |
Пусть
Рассмотрев случаи, видим, что для любого из них выполнено:
|
Утверждение (D.P.Sumner, M.Las Vergnas, следствие из теоремы): |
Пусть совершенное паросочетание. — связный граф, не содержащий лапы, чётно. Тогда имеет |
Пусть |
См. также
- Декомпозиция Эдмондса-Галлаи
- Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях
- Теорема Татта о существовании полного паросочетания
Источники информации
- Карпов Д. В. - Теория графов, стр 55