Лапы и минимальные по включению барьеры в графе — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 47: Строка 47:
 
Рассмотрев случаи, видим, что для любого из них выполнено: <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 </tex> <br>
 
Рассмотрев случаи, видим, что для любого из них выполнено: <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 </tex> <br>
 
<tex>B</tex> {{---}} барьер <tex> \Leftrightarrow \mathrm{odd}(G\setminus B) - |B| = \mathrm{def}(G) </tex> <br>
 
<tex>B</tex> {{---}} барьер <tex> \Leftrightarrow \mathrm{odd}(G\setminus B) - |B| = \mathrm{def}(G) </tex> <br>
Тогда <tex>\mathrm{odd}(G\setminus B')\ \geqslant |B| - 1 + \mathrm{def}(G)</tex><br>  
+
Тогда <tex>\mathrm{odd}(G\setminus B')\ \geqslant |B| - 1 + \mathrm{def}(G)</tex><br>  
То есть <tex>\mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G)</tex><br>
+
То есть <tex>\mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G)</tex><br>
 
Тогда возможны два случая:
 
Тогда возможны два случая:
 
#Если выполняется равенство <tex> \mathrm{odd}(G\setminus B') - |B'|\ =  \mathrm{def}(G) </tex>, то, по определению, <tex>B'</tex> является барьером. <br>
 
#Если выполняется равенство <tex> \mathrm{odd}(G\setminus B') - |B'|\ =  \mathrm{def}(G) </tex>, то, по определению, <tex>B'</tex> является барьером. <br>
 
#:Но <tex>|B'| < |B| </tex>, а значит, <tex>B</tex> не является минимальным по включению барьером <tex>\Rightarrow</tex> противоречие условию теоремы. <br>
 
#:Но <tex>|B'| < |B| </tex>, а значит, <tex>B</tex> не является минимальным по включению барьером <tex>\Rightarrow</tex> противоречие условию теоремы. <br>
 
#Если <tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G)</tex>, то <br>
 
#Если <tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G)</tex>, то <br>
#:<tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G) = \mathrm{odd}(G\setminus B) - |B|\</tex>, что противоречит [[Декомпозиция Эдмондса-Галлаи#Th_Berge| теореме Бержа]]. <br>
+
#:<tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G) = \mathrm{odd}(G\setminus B) - |B|\</tex>, что противоречит [[ Декомпозиция Эдмондса-Галлаи#Th_Berge| теореме Бержа ]]. <br>
 
В обоих случаях мы пришли к противоречию, значит, наше предположение неверно и <tex>\forall x\in B</tex> является центром лапы в <tex>G</tex>.
 
В обоих случаях мы пришли к противоречию, значит, наше предположение неверно и <tex>\forall x\in B</tex> является центром лапы в <tex>G</tex>.
 
}}
 
}}
  
 
{{Утверждение  
 
{{Утверждение  
|id=proposal1   
+
|id = proposal1   
|author=D.P.Sumner, M.Las Vergnas
+
|author = D.P.Sumner, M.Las Vergnas
|about=следствие из теоремы
+
|about = следствие из теоремы
|statement=Пусть <tex>G</tex> {{---}} связный граф, не содержащий лапы, <tex>v(G)</tex> чётно. Тогда <tex>G</tex> имеет [[Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях#perfect_matching | совершенное паросочетание]].
+
|statement = Пусть <tex>G</tex> {{---}} связный граф, не содержащий лапы, <tex>v(G)</tex> чётно. Тогда <tex>G</tex> имеет [[ Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях#perfect_matching | совершенное паросочетание ]].
 
|proof= Пусть <tex>B</tex> {{---}} минимальный по включению барьер графа <tex>G</tex>. Тогда, по предыдущей теореме имеем <tex>B = \varnothing </tex>.<br>
 
|proof= Пусть <tex>B</tex> {{---}} минимальный по включению барьер графа <tex>G</tex>. Тогда, по предыдущей теореме имеем <tex>B = \varnothing </tex>.<br>
 
По условию <tex>G</tex> {{---}} связный граф с чётным числом вершин <tex>\Rightarrow </tex> <tex>\mathrm{odd}(G\setminus \varnothing )\ = 0 </tex>. <br>
 
По условию <tex>G</tex> {{---}} связный граф с чётным числом вершин <tex>\Rightarrow </tex> <tex>\mathrm{odd}(G\setminus \varnothing )\ = 0 </tex>. <br>
<tex>B</tex> {{---}} барьер <tex>\Leftrightarrow \mathrm{def}(G) = \mathrm{odd}(G\setminus \varnothing) - |\varnothing|\ = 0 </tex>. Значит, количество вершин, не покрытых [[Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях#maximal_matching | максимальным паросочетанием]], равно 0, то есть существует совершенное паросочетание.
+
<tex>B</tex> {{---}} барьер <tex>\Leftrightarrow \mathrm{def}(G) = \mathrm{odd}(G\setminus \varnothing) - |\varnothing|\ = 0 </tex>. Значит, количество вершин, не покрытых [[ Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях#maximal_matching | максимальным паросочетанием ]], равно 0, то есть в <tex>G</tex> существует совершенное паросочетание.
 
}}
 
}}
  

Версия 01:38, 15 декабря 2017

Определение:
Лапой (англ. paw) называется индуцированный подграф графа [math]G[/math], изоморфный двудольному графу [math]K_{1,\;3}[/math].
Лапа




Определение:
Центром лапы (англ. paw center) называется вершина степени три в лапе.




Определение:
Минимальным по включению барьером (англ.minimum barrier) называется барьер минимальной мощности.




Теорема:
Пусть [math]B[/math] — минимальный по включению барьер графа [math]G[/math], тогда каждая вершина [math]B[/math] — центр лапы в [math]G[/math].
Доказательство:
[math]\triangleright[/math]

Предположим, что [math]x\in B[/math] не является центром лапы. Тогда [math]x[/math] смежна не более чем с двумя компонентами связности графа [math]G \setminus B[/math].
Введём обозначение [math]B' = B\setminus x[/math].
Найдём соотношение между [math]\mathrm{odd}[/math][math](G\setminus B')\ [/math] и [math]\mathrm{odd}(G\setminus B)\ [/math].
Для этого рассмотрим всевозможные случаи количества компонент связности в графе [math]G \setminus B[/math], с которыми смежна [math]x[/math], и посмотрим на их четности (компоненты в [math]B[/math], с которыми смежна [math]x[/math], нас не интересуют).

  1. [math]x[/math] смежна с двумя компонентами связности графа [math]G \setminus B[/math].
    [math]x[/math] смежна с двумя компонентами связности из [math]G \setminus B[/math]

    a) Одна компонента чётная, другая — нечетная. Тогда [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math]
    b) Обе компоненты чётные: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math]
    c) Обе компоненты нечётные: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math]
  2. [math]x[/math] смежна с одной компонентой связности графа [math]G \setminus B[/math].
    a) Эта компонента чётная: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math]
    b) Эта компонента нечётная: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math]
  3. [math]x[/math] не смежна ни с какой компонентой связности графа [math]G \setminus B[/math]: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math]

Рассмотрев случаи, видим, что для любого из них выполнено: [math]\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 [/math]
[math]B[/math] — барьер [math] \Leftrightarrow \mathrm{odd}(G\setminus B) - |B| = \mathrm{def}(G) [/math]
Тогда [math]\mathrm{odd}(G\setminus B')\ \geqslant |B| - 1 + \mathrm{def}(G)[/math]
То есть [math]\mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G)[/math]
Тогда возможны два случая:

  1. Если выполняется равенство [math] \mathrm{odd}(G\setminus B') - |B'|\ = \mathrm{def}(G) [/math], то, по определению, [math]B'[/math] является барьером.
    Но [math]|B'| \lt |B| [/math], а значит, [math]B[/math] не является минимальным по включению барьером [math]\Rightarrow[/math] противоречие условию теоремы.
  2. Если [math]\mathrm{odd}(G\setminus B') - |B'|\ \gt \mathrm{def}(G)[/math], то
    [math]\mathrm{odd}(G\setminus B') - |B'|\ \gt \mathrm{def}(G) = \mathrm{odd}(G\setminus B) - |B|\[/math], что противоречит теореме Бержа .
В обоих случаях мы пришли к противоречию, значит, наше предположение неверно и [math]\forall x\in B[/math] является центром лапы в [math]G[/math].
[math]\triangleleft[/math]
Утверждение (D.P.Sumner, M.Las Vergnas, следствие из теоремы):
Пусть [math]G[/math] — связный граф, не содержащий лапы, [math]v(G)[/math] чётно. Тогда [math]G[/math] имеет совершенное паросочетание .
[math]\triangleright[/math]

Пусть [math]B[/math] — минимальный по включению барьер графа [math]G[/math]. Тогда, по предыдущей теореме имеем [math]B = \varnothing [/math].
По условию [math]G[/math] — связный граф с чётным числом вершин [math]\Rightarrow [/math] [math]\mathrm{odd}(G\setminus \varnothing )\ = 0 [/math].

[math]B[/math] — барьер [math]\Leftrightarrow \mathrm{def}(G) = \mathrm{odd}(G\setminus \varnothing) - |\varnothing|\ = 0 [/math]. Значит, количество вершин, не покрытых максимальным паросочетанием , равно 0, то есть в [math]G[/math] существует совершенное паросочетание.
[math]\triangleleft[/math]

См. также

Источники информации

  • Карпов Д. В. — Теория графов, стр 55