Лапы и минимальные по включению барьеры в графе — различия между версиями
Строка 34: | Строка 34: | ||
|statement = Пусть <tex>B</tex> {{---}} минимальный по включению барьер графа <tex>G</tex>, тогда каждая вершина <tex>B</tex> {{---}} центр лапы в <tex>G</tex>. | |statement = Пусть <tex>B</tex> {{---}} минимальный по включению барьер графа <tex>G</tex>, тогда каждая вершина <tex>B</tex> {{---}} центр лапы в <tex>G</tex>. | ||
|proof = Предположим, что <tex>x\in B</tex> не является центром лапы. Тогда <tex>x</tex> смежна не более чем с двумя компонентами связности графа <tex>G \setminus B</tex>. <br> | |proof = Предположим, что <tex>x\in B</tex> не является центром лапы. Тогда <tex>x</tex> смежна не более чем с двумя компонентами связности графа <tex>G \setminus B</tex>. <br> | ||
− | Введём обозначение <tex>B' = B\setminus x</tex>.<br> | + | Введём обозначение <tex>B' = B\setminus x</tex>. <br> |
− | Найдём соотношение между [[Теорема Татта о существовании полного паросочетания#odd | <tex>\mathrm{odd}</tex>]]<tex>(G\setminus B')\ </tex> и <tex>\mathrm{odd}(G\setminus B)\ </tex>. <br> | + | Найдём соотношение между [[ Теорема Татта о существовании полного паросочетания#odd | <tex>\mathrm{odd}</tex> ]]<tex>(G\setminus B')\ </tex> и <tex>\mathrm{odd}(G\setminus B)\ </tex>. <br> |
Для этого рассмотрим всевозможные случаи количества компонент связности в графе <tex>G \setminus B</tex>, с которыми смежна <tex>x</tex>, и посмотрим на их четности (компоненты в <tex>B</tex>, с которыми смежна <tex>x</tex>, нас не интересуют).<br> | Для этого рассмотрим всевозможные случаи количества компонент связности в графе <tex>G \setminus B</tex>, с которыми смежна <tex>x</tex>, и посмотрим на их четности (компоненты в <tex>B</tex>, с которыми смежна <tex>x</tex>, нас не интересуют).<br> | ||
− | # <tex>x</tex> смежна с двумя компонентами связности графа <tex>G \setminus B</tex>.[[Файл:GraphsForLaps.png|300px|thumb|right|<tex>x</tex> смежна с двумя компонентами связности | + | # <tex>x</tex> смежна с двумя компонентами связности графа <tex>G \setminus B</tex>.[[ Файл:GraphsForLaps.png|300px|thumb|right|<tex>x</tex> смежна с двумя компонентами связности графа <tex>G \setminus B</tex> ]] <br> |
− | #: a) Одна компонента чётная, другая {{---}} нечетная. Тогда <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | + | #: a) Одна компонента чётная, другая {{---}} нечетная. Тогда <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex>. <br> |
− | #: b) Обе компоненты чётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> | + | #: b) Обе компоненты чётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex>. <br> |
− | #: c) Обе компоненты нечётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | + | #: c) Обе компоненты нечётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex>. <br> |
#<tex>x</tex> смежна с одной компонентой связности графа <tex>G \setminus B</tex>.<br> | #<tex>x</tex> смежна с одной компонентой связности графа <tex>G \setminus B</tex>.<br> | ||
− | #: a) Эта компонента чётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> | + | #: a) Эта компонента чётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex>. <br> |
− | #: b) Эта компонента нечётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | + | #: b) Эта компонента нечётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex>. <br> |
− | # <tex>x</tex> не смежна ни с какой компонентой связности графа <tex>G \setminus B</tex>: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex> <br> | + | # <tex>x</tex> не смежна ни с какой компонентой связности графа <tex>G \setminus B</tex>: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex>. <br> |
− | Рассмотрев случаи, видим, что для любого из них выполнено: <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 </tex> <br> | + | Рассмотрев случаи, видим, что для любого из них выполнено: <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 </tex>. <br> |
− | <tex>B</tex> {{---}} барьер <tex> \Leftrightarrow \mathrm{odd}(G\setminus B) - |B| = \mathrm{def}(G) </tex> <br> | + | <tex>B</tex> {{---}} барьер <tex> \Leftrightarrow \mathrm{odd}(G\setminus B) - |B| = \mathrm{def}(G) </tex>. <br> |
− | Тогда <tex>\mathrm{odd}(G\setminus B')\ \geqslant |B| - 1 + \mathrm{def}(G)</tex><br> | + | Тогда <tex> \mathrm{odd}(G\setminus B')\ \geqslant |B| - 1 + \mathrm{def}(G) </tex>. <br> |
− | То есть <tex>\mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G)</tex><br> | + | То есть <tex> \mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G) </tex>. <br> |
Тогда возможны два случая: | Тогда возможны два случая: | ||
#Если выполняется равенство <tex> \mathrm{odd}(G\setminus B') - |B'|\ = \mathrm{def}(G) </tex>, то, по определению, <tex>B'</tex> является барьером. <br> | #Если выполняется равенство <tex> \mathrm{odd}(G\setminus B') - |B'|\ = \mathrm{def}(G) </tex>, то, по определению, <tex>B'</tex> является барьером. <br> |
Версия 01:44, 15 декабря 2017
Определение:
Лапой (англ. paw) называется индуцированный подграф графа изоморфный двудольному графу .
,
Определение:
Центром лапы (англ. paw center) называется вершина степени три в лапе.
Определение:
Минимальным по включению барьером (англ.minimum barrier) называется барьер минимальной мощности.
Теорема: |
Пусть — минимальный по включению барьер графа , тогда каждая вершина — центр лапы в . |
Доказательство: |
Предположим, что
Рассмотрев случаи, видим, что для любого из них выполнено:
|
Утверждение (D.P.Sumner, M.Las Vergnas, следствие из теоремы): |
Пусть совершенное паросочетание . — связный граф, не содержащий лапы, чётно. Тогда имеет |
Пусть |
См. также
- Декомпозиция Эдмондса-Галлаи
- Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях
- Теорема Татта о существовании полного паросочетания
Источники информации
- Карпов Д. В. — Теория графов, стр 55