Лапы и минимальные по включению барьеры в графе — различия между версиями
Строка 2: | Строка 2: | ||
|id = paw | |id = paw | ||
|neat = 1 | |neat = 1 | ||
− | |definition = '''Лапой''' (англ. ''paw'') называется индуцированный подграф графа <tex>G</tex>, [[Основные определения теории графов#isomorphic_graphs | изоморфный]] [[Основные определения теории графов#defBiparateGraph | двудольному]] графу <tex>K_{1,\;3}</tex>. | + | |definition = '''Лапой''' (англ. ''paw'') называется индуцированный подграф графа <tex>G</tex>, [[ Основные определения теории графов#isomorphic_graphs | изоморфный ]] [[ Основные определения теории графов#defBiparateGraph | двудольному ]] графу <tex>K_{1,\;3}</tex>. |
− | }} [[Файл:Lapa.png|180px|thumb|right|Лапа]] | + | }} [[ Файл:Lapa.png|180px|thumb|right|Лапа ]] |
Строка 37: | Строка 37: | ||
Найдём соотношение между [[ Теорема Татта о существовании полного паросочетания#odd | <tex>\mathrm{odd}</tex> ]]<tex>(G\setminus B')\ </tex> и <tex>\mathrm{odd}(G\setminus B)\ </tex>. <br> | Найдём соотношение между [[ Теорема Татта о существовании полного паросочетания#odd | <tex>\mathrm{odd}</tex> ]]<tex>(G\setminus B')\ </tex> и <tex>\mathrm{odd}(G\setminus B)\ </tex>. <br> | ||
Для этого рассмотрим всевозможные случаи количества компонент связности в графе <tex>G \setminus B</tex>, с которыми смежна <tex>x</tex>, и посмотрим на их четности (компоненты в <tex>B</tex>, с которыми смежна <tex>x</tex>, нас не интересуют).<br> | Для этого рассмотрим всевозможные случаи количества компонент связности в графе <tex>G \setminus B</tex>, с которыми смежна <tex>x</tex>, и посмотрим на их четности (компоненты в <tex>B</tex>, с которыми смежна <tex>x</tex>, нас не интересуют).<br> | ||
− | # <tex>x</tex> смежна с двумя компонентами связности графа <tex>G \setminus B</tex>.[[ Файл:GraphsForLaps.png|300px|thumb|right|<tex>x</tex> смежна с двумя компонентами связности графа <tex>G \setminus B</tex> ]] <br> | + | # <tex>x</tex> смежна с двумя компонентами связности графа <tex>G \setminus B</tex>.[[ Файл:GraphsForLaps.png|300px|thumb|right|<tex>x</tex> смежна с двумя компонентами связности графа <tex>G \setminus B</tex> ]] <br> |
#: a) Одна компонента чётная, другая {{---}} нечетная. Тогда <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex>. <br> | #: a) Одна компонента чётная, другая {{---}} нечетная. Тогда <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex>. <br> | ||
#: b) Обе компоненты чётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex>. <br> | #: b) Обе компоненты чётные: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex>. <br> | ||
Строка 44: | Строка 44: | ||
#: a) Эта компонента чётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex>. <br> | #: a) Эта компонента чётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex>. <br> | ||
#: b) Эта компонента нечётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex>. <br> | #: b) Эта компонента нечётная: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 </tex>. <br> | ||
− | # <tex>x</tex> не смежна ни с какой компонентой связности графа <tex>G \setminus B</tex>: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex>. <br> | + | # <tex>x</tex> не смежна ни с какой компонентой связности графа <tex>G \setminus B</tex>: <tex>\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 </tex>. <br> |
Рассмотрев случаи, видим, что для любого из них выполнено: <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 </tex>. <br> | Рассмотрев случаи, видим, что для любого из них выполнено: <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 </tex>. <br> | ||
<tex>B</tex> {{---}} барьер <tex> \Leftrightarrow \mathrm{odd}(G\setminus B) - |B| = \mathrm{def}(G) </tex>. <br> | <tex>B</tex> {{---}} барьер <tex> \Leftrightarrow \mathrm{odd}(G\setminus B) - |B| = \mathrm{def}(G) </tex>. <br> | ||
Строка 50: | Строка 50: | ||
То есть <tex> \mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G) </tex>. <br> | То есть <tex> \mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G) </tex>. <br> | ||
Тогда возможны два случая: | Тогда возможны два случая: | ||
− | #Если выполняется равенство <tex> \mathrm{odd}(G\setminus B') - |B'|\ = \mathrm{def}(G) </tex>, то, по определению, <tex>B'</tex> является барьером. <br> | + | # Если выполняется равенство <tex> \mathrm{odd}(G\setminus B') - |B'|\ = \mathrm{def}(G) </tex>, то, по определению, <tex>B'</tex> является барьером. <br> |
− | #:Но <tex>|B'| < |B| </tex>, а значит, <tex>B</tex> не является минимальным по включению барьером <tex>\Rightarrow</tex> противоречие условию теоремы. <br> | + | #: Но <tex>|B'| < |B| </tex>, а значит, <tex>B</tex> не является минимальным по включению барьером <tex>\Rightarrow</tex> противоречие условию теоремы. <br> |
− | #Если <tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G)</tex>, то <br> | + | # Если <tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G)</tex>, то <br> |
− | #:<tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G) = \mathrm{odd}(G\setminus B) - |B|\</tex>, что противоречит [[ Декомпозиция Эдмондса-Галлаи#Th_Berge| теореме Бержа ]]. <br> | + | #: <tex>\mathrm{odd}(G\setminus B') - |B'|\ > \mathrm{def}(G) = \mathrm{odd}(G\setminus B) - |B|\</tex>, что противоречит [[ Декомпозиция Эдмондса-Галлаи#Th_Berge| теореме Бержа ]]. <br> |
В обоих случаях мы пришли к противоречию, значит, наше предположение неверно и <tex>\forall x\in B</tex> является центром лапы в <tex>G</tex>. | В обоих случаях мы пришли к противоречию, значит, наше предположение неверно и <tex>\forall x\in B</tex> является центром лапы в <tex>G</tex>. | ||
}} | }} |
Версия 01:46, 15 декабря 2017
Определение:
Лапой (англ. paw) называется индуцированный подграф графа изоморфный двудольному графу .
,
Определение:
Центром лапы (англ. paw center) называется вершина степени три в лапе.
Определение:
Минимальным по включению барьером (англ.minimum barrier) называется барьер минимальной мощности.
Теорема: |
Пусть — минимальный по включению барьер графа , тогда каждая вершина — центр лапы в . |
Доказательство: |
Предположим, что
Рассмотрев случаи, видим, что для любого из них выполнено:
|
Утверждение (D.P.Sumner, M.Las Vergnas, следствие из теоремы): |
Пусть совершенное паросочетание . — связный граф, не содержащий лапы, чётно. Тогда имеет |
Пусть |
См. также
- Декомпозиция Эдмондса-Галлаи
- Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях
- Теорема Татта о существовании полного паросочетания
Источники информации
- Карпов Д. В. — Теория графов, стр 55