Лапы и минимальные по включению барьеры в графе — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 65: Строка 65:
 
|proof= Пусть <tex>B</tex> {{---}} минимальный по включению барьер графа <tex>G</tex>. Тогда, по предыдущей теореме имеем <tex>B = \varnothing </tex>.<br>
 
|proof= Пусть <tex>B</tex> {{---}} минимальный по включению барьер графа <tex>G</tex>. Тогда, по предыдущей теореме имеем <tex>B = \varnothing </tex>.<br>
 
По условию <tex>G</tex> {{---}} связный граф с чётным числом вершин <tex>\Rightarrow </tex> <tex>\mathrm{odd}(G\setminus \varnothing )\ = 0 </tex>. <br>
 
По условию <tex>G</tex> {{---}} связный граф с чётным числом вершин <tex>\Rightarrow </tex> <tex>\mathrm{odd}(G\setminus \varnothing )\ = 0 </tex>. <br>
<tex>B</tex> {{---}} барьер <tex>\Leftrightarrow \mathrm{def}(G) = \mathrm{odd}(G\setminus \varnothing) - |\varnothing|\ = 0 </tex>. Значит, количество вершин, не покрытых [[ Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях#maximal_matching | максимальным паросочетанием ]], равно <tex>0</tex>, то есть в <tex>G</tex> существует совершенное паросочетание.
+
<tex>B</tex> {{---}} барьер и он пуст <tex>\Leftrightarrow \mathrm{def}(G) = \mathrm{odd}(G\setminus \varnothing) - |\varnothing|\ = 0 </tex>. Значит, количество вершин, не покрытых [[ Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях#maximal_matching | максимальным паросочетанием ]], равно <tex>0</tex>, то есть в <tex>G</tex> существует совершенное паросочетание.
 
}}
 
}}
  

Версия 01:56, 17 декабря 2017

Определение:
Лапой (англ. claw) называется индуцированный подграф графа [math]G[/math], изоморфный двудольному графу [math]K_{1, 3}[/math].
Лапа




Определение:
Центром лапы (англ. claw center) называется вершина степени три в лапе.




Определение:
Минимальным по включению барьером (англ.minimum barrier) называется барьер минимальной мощности.




Теорема:
Пусть [math]B[/math] — минимальный по включению барьер графа [math]G[/math], тогда каждая вершина [math]B[/math] — центр лапы в [math]G[/math].
Доказательство:
[math]\triangleright[/math]

Предположим, что [math]x\in B[/math] не является центром лапы. Тогда [math]x[/math] смежна не более чем с двумя компонентами связности графа [math]G \setminus B[/math].
Пусть [math]B' = B\setminus \{ x \}[/math].
Найдём соотношение между [math]\mathrm{odd}[/math] [math](G\setminus B')\ [/math] и [math]\mathrm{odd}(G\setminus B)\ [/math].
Для этого рассмотрим всевозможные случаи количества компонент связности в графе [math]G \setminus B[/math], с которыми смежна [math]x[/math], и посмотрим на их четности (компоненты в [math]B[/math], с которыми смежна [math]x[/math], нас не интересуют).

  1. [math]x[/math] смежна с двумя компонентами связности графа [math]G \setminus B[/math].
    [math]x[/math] смежна с двумя компонентами связности графа [math]G \setminus B[/math]

    • Одна компонента чётная, другая — нечетная. Тогда [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math].
    • Обе компоненты чётные: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math].
    • Обе компоненты нечётные: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math].
  2. [math]x[/math] смежна с одной компонентой связности графа [math]G \setminus B[/math].
    • Эта компонента чётная: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math].
    • Эта компонента нечётная: [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ - 1 [/math].
  3. [math]x[/math] не смежна ни с какой компонентой связности графа [math]G \setminus B[/math].
    [math]\mathrm{odd}(G\setminus B')\ = \mathrm{odd}(G\setminus B)\ + 1 [/math].

Для любого из случаев выполнено: [math]\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ - 1 [/math].
[math]B[/math] — барьер [math] \Leftrightarrow \mathrm{odd}(G\setminus B) - |B| = \mathrm{def}(G) [/math].
Тогда [math] \mathrm{odd}(G\setminus B')\ \geqslant |B| - 1 + \mathrm{def}(G) [/math].
То есть [math] \mathrm{odd}(G\setminus B') - |B'|\ \geqslant \mathrm{def}(G) [/math].
Тогда возможны два случая:

  1. Если выполняется равенство [math] \mathrm{odd}(G\setminus B') - |B'|\ = \mathrm{def}(G) [/math], то, по определению, [math]B'[/math] является барьером.
    Но [math]|B'| \lt |B| [/math], а значит, [math]B[/math] не является минимальным по включению барьером [math]\Rightarrow[/math] противоречие условию теоремы.
  2. Если [math]\mathrm{odd}(G\setminus B') - |B'|\ \gt \mathrm{def}(G)[/math], то есть [math]\mathrm{odd}(G\setminus B') - |B'|\ \gt \mathrm{odd}(G\setminus B) - |B|\[/math].
    Тогда, по теореме Бержа, [math]\mathrm{def}(G) \ne \mathrm{odd}(G\setminus B) - |B|\[/math] [math]\Rightarrow[/math] противоречие.
В обоих случаях мы пришли к противоречию, значит, наше предположение неверно и [math]\forall x\in B[/math] является центром лапы в [math]G[/math].
[math]\triangleleft[/math]
Утверждение (D.P.Sumner, M.Las Vergnas, следствие из теоремы):
Пусть [math]G[/math] — связный граф, не содержащий лапы, [math]v(G)[/math] чётно. Тогда [math]G[/math] имеет совершенное паросочетание .
[math]\triangleright[/math]

Пусть [math]B[/math] — минимальный по включению барьер графа [math]G[/math]. Тогда, по предыдущей теореме имеем [math]B = \varnothing [/math].
По условию [math]G[/math] — связный граф с чётным числом вершин [math]\Rightarrow [/math] [math]\mathrm{odd}(G\setminus \varnothing )\ = 0 [/math].

[math]B[/math] — барьер и он пуст [math]\Leftrightarrow \mathrm{def}(G) = \mathrm{odd}(G\setminus \varnothing) - |\varnothing|\ = 0 [/math]. Значит, количество вершин, не покрытых максимальным паросочетанием , равно [math]0[/math], то есть в [math]G[/math] существует совершенное паросочетание.
[math]\triangleleft[/math]

См. также

Источники информации

  • Карпов Д. В. — Теория графов, стр 55
  • Ловас Л., Пламмер М. — Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии, стр 165-166