Пороговая функция — различия между версиями
Shersh (обсуждение | вклад) м (→Источники) |
|||
| Строка 64: | Строка 64: | ||
Пороговые функции алгебры логики представляют интерес в связи с простотой технической реализации, в связи со своими вычислительными возможностями, а также благодаря возможности их обучения. Последнее свойство с успехом применяется на практике при решении плохо формализуемых задач. Пороговые функции применяются в качестве передаточных функций в искусственных нейронах, из которых состоят искусственные нейронные сети. А так как искусственный нейрон полностью характеризуется своей передаточной функцией, то пороговые функции являются математической моделью нейронов. | Пороговые функции алгебры логики представляют интерес в связи с простотой технической реализации, в связи со своими вычислительными возможностями, а также благодаря возможности их обучения. Последнее свойство с успехом применяется на практике при решении плохо формализуемых задач. Пороговые функции применяются в качестве передаточных функций в искусственных нейронах, из которых состоят искусственные нейронные сети. А так как искусственный нейрон полностью характеризуется своей передаточной функцией, то пороговые функции являются математической моделью нейронов. | ||
| + | |||
| + | == См. также == | ||
| + | * [[Определение_булевой_функции|Булевы функции]] | ||
| + | * [[Полные_системы_функций._Теорема_Поста_о_полной_системе_функций#.D0.97.D0.B0.D0.BC.D0.BA.D0.BD.D1.83.D1.82.D1.8B.D0.B5_.D0.BA.D0.BB.D0.B0.D1.81.D1.81.D1.8B_.D0.B1.D1.83.D0.BB.D0.B5.D0.B2.D1.8B.D1.85_.D1.84.D1.83.D0.BD.D0.BA.D1.86.D0.B8.D0.B9|Замкнутые классы булевых функций]] | ||
== Источники информации == | == Источники информации == | ||
Версия 18:11, 27 декабря 2017
| Определение: |
| Булева функция называется пороговой (англ. threshold function), если ее можно представить в виде , где — вес (англ. weight) аргумента , а — порог (англ. threshold) функции ; |
Обычно пороговую функцию записывают в следующим виде: .
Содержание
Пример
Рассмотрим функцию трёх аргументов . Согласно этой записи имеем
- .
Все наборы значений аргументов , на которых функция принимает единичное (либо нулевое) значение, можно получить из соотношения вида .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
Таким образом, заданная функция принимает единичное значение на наборах , , , , . Её минимальная форма имеет вид
- .
| Утверждение: |
Для всякой пороговой функции справедливо
|
|
Чтобы убедиться в этом достаточно записать |
Примеры пороговых функций
Примерами пороговых функций служат функции и . Представим функцию в виде . Докажем, что это именно пороговая функция, подставив все возможные значения аргументов:
- , то .
- , то .
- , то .
- , то .
Таблица значений совпадает с таблицей истинности функции , следовательно — пороговая функция.
Функцию представим в виде . Аналогично докажем, что это пороговая функция:
- , то .
- , то .
- , то .
- , то .
Таблица значений совпадает с таблицей истинности функции , следовательно — пороговая функция.
Пример непороговой функции
| Утверждение: |
Функция — непороговая. |
| Предположим, что — пороговая функция. При аргументах значение функции равно . Тогда по определению пороговой функции неравенство не должно выполняться. Подставляя значение аргументов, получаем, что . При аргументах и значение функции равно . Тогда по определению выполняется неравенство , подставляя в которое значения соответствующих аргументов, получаем . Отсюда следует, что и . При аргументах значение функции равно 0, следовательно неравенство выполняться не должно, то есть . Но неравенства и при положительных и одновременно выполняться не могут. Получили противоречие, следовательно, функция — непороговая. |
Значимость пороговых функций
Пороговые функции алгебры логики представляют интерес в связи с простотой технической реализации, в связи со своими вычислительными возможностями, а также благодаря возможности их обучения. Последнее свойство с успехом применяется на практике при решении плохо формализуемых задач. Пороговые функции применяются в качестве передаточных функций в искусственных нейронах, из которых состоят искусственные нейронные сети. А так как искусственный нейрон полностью характеризуется своей передаточной функцией, то пороговые функции являются математической моделью нейронов.