Полные системы функций. Теорема Поста о полной системе функций — различия между версиями
Pavponn (обсуждение | вклад) (→Замкнутые классы булевых функций) |
|||
Строка 28: | Строка 28: | ||
{{Определение | {{Определение | ||
|id = save0 | |id = save0 | ||
− | |definition=Говорят, что функция '''сохраняет ноль''', если <tex>f(0, 0, \ | + | |definition=Говорят, что функция '''сохраняет ноль''', если <tex>f(0, 0, \ldots, 0) = 0</tex>. |
}} | }} | ||
Строка 35: | Строка 35: | ||
{{Определение | {{Определение | ||
|id = save1 | |id = save1 | ||
− | |definition=Говорят, что функция '''сохраняет единицу''', если <tex>f(1, 1, \ | + | |definition=Говорят, что функция '''сохраняет единицу''', если <tex>f(1, 1, \ldots, 1) = 1</tex>. |
}} | }} | ||
Строка 42: | Строка 42: | ||
{{Определение | {{Определение | ||
|id = selfDual | |id = selfDual | ||
− | |definition=Говорят, что функция '''самодвойственна''' (англ. ''self-dual''), если <tex>f(\overline{x_1},\ | + | |definition=Говорят, что функция '''самодвойственна''' (англ. ''self-dual''), если <tex>f(\overline{x_1},\ldots,\overline{x_n})=\overline{f(x_1,\ldots,x_n)}</tex>. Иными словами, функция называется самодвойственной, если на противоположных наборах она принимает противоположные значения. |
}} | }} | ||
Строка 48: | Строка 48: | ||
{{Определение | {{Определение | ||
|id = monotone | |id = monotone | ||
− | |definition=Говорят, что функция '''монотонна''' (англ. ''monotonic function'') , если <tex>\forall i (a_i \leqslant b_i) \Rightarrow f(a_1,\ | + | |definition=Говорят, что функция '''монотонна''' (англ. ''monotonic function'') , если <tex>\forall i (a_i \leqslant b_i) \Rightarrow f(a_1,\ldots,a_n)\leqslant f(b_1,\ldots,b_n)</tex>. |
}} | }} | ||
Строка 54: | Строка 54: | ||
{{Определение | {{Определение | ||
|id = linear | |id = linear | ||
− | |definition=Говорят, что функция '''линейна''' (англ. ''linear function''), если существуют такие <tex>a_0, a_1, a_2, \ | + | |definition=Говорят, что функция '''линейна''' (англ. ''linear function''), если существуют такие <tex>a_0, a_1, a_2, \ldots, a_n</tex>, где <tex>a_i \in \{0, 1\}, \forall i=\overline{1,n}</tex>, что для любых <tex>x_1, x_2, \ldots, x_n</tex> имеет место равенство: |
− | :<tex>f(x_1, x_2, \ | + | :<tex>f(x_1, x_2, \ldots, x_n) = a_0\oplus a_1\cdot x_1\oplus a_2\cdot x_2 \oplus\ldots\oplus a_n\cdot x_n</tex>. |
}} | }} | ||
Количество линейных функций от <tex>n</tex> переменных равно <tex>~2^{n+1}</tex>. | Количество линейных функций от <tex>n</tex> переменных равно <tex>~2^{n+1}</tex>. | ||
Строка 76: | Строка 76: | ||
# Рассмотрим функцию, не сохраняющую ноль {{---}} <tex>f_0</tex> (то есть функцию, для которой <tex>f_0(0) = 1</tex>). Тогда <tex> f_0(1)</tex> может принимать два значения: | # Рассмотрим функцию, не сохраняющую ноль {{---}} <tex>f_0</tex> (то есть функцию, для которой <tex>f_0(0) = 1</tex>). Тогда <tex> f_0(1)</tex> может принимать два значения: | ||
## <tex>f_0(1) = 1</tex>, тогда <tex>f_0(x, x, x, \ldots, x) = 1</tex>. | ## <tex>f_0(1) = 1</tex>, тогда <tex>f_0(x, x, x, \ldots, x) = 1</tex>. | ||
− | ## <tex>f_0(1) = 0</tex>, тогда <tex>f_0(x, x, x, \ | + | ## <tex>f_0(1) = 0</tex>, тогда <tex>f_0(x, x, x, \ldots, x) = \neg x</tex>. |
# Рассмотрим функцию, не сохраняющую один {{---}} <tex>f_1</tex> (то есть функцию, для которой <tex>f_1(1) = 0</tex>). Тогда <tex>f_1(0)</tex> может принимать два значения: | # Рассмотрим функцию, не сохраняющую один {{---}} <tex>f_1</tex> (то есть функцию, для которой <tex>f_1(1) = 0</tex>). Тогда <tex>f_1(0)</tex> может принимать два значения: | ||
## <tex>f_1(0) = 0</tex>, тогда <tex>f_1(x, x, x, \ldots, x) = 0</tex>. | ## <tex>f_1(0) = 0</tex>, тогда <tex>f_1(x, x, x, \ldots, x) = 0</tex>. | ||
Строка 105: | Строка 105: | ||
# Присутствует член <tex>\oplus ~1</tex>. Возьмем отрицание от <tex>g_l</tex> и член <tex>\oplus ~1</tex> исчезнет. | # Присутствует член <tex>\oplus ~1</tex>. Возьмем отрицание от <tex>g_l</tex> и член <tex>\oplus ~1</tex> исчезнет. | ||
# Присутствуют три члена, без <tex>\oplus ~1</tex>: <tex>g_l= x_1 \land x_2 \oplus x_1 \oplus x_2</tex>. Составив таблицу истинности для этой функции нетрудно заметить, что она эквивалентна функции <tex> \vee </tex>. | # Присутствуют три члена, без <tex>\oplus ~1</tex>: <tex>g_l= x_1 \land x_2 \oplus x_1 \oplus x_2</tex>. Составив таблицу истинности для этой функции нетрудно заметить, что она эквивалентна функции <tex> \vee </tex>. | ||
− | # Присутствуют два члена, без <tex>\oplus ~1</tex>. Построив две таблицы истинности для двух различных вариантов, заметим, что в обоих случаях функция истинна только в одной точке, следовательно, СДНФ функции <tex>g_l</tex> будет состоять только из одного члена. Если это так, то не составляет труда выразить <tex> \wedge </tex> через <tex> \neg </tex> и <tex>g_l</tex>. Например, если функция <tex>g_l(x_1, x_2, | + | # Присутствуют два члена, без <tex>\oplus ~1</tex>. Построив две таблицы истинности для двух различных вариантов, заметим, что в обоих случаях функция истинна только в одной точке, следовательно, СДНФ функции <tex>g_l</tex> будет состоять только из одного члена. Если это так, то не составляет труда выразить <tex> \wedge </tex> через <tex> \neg </tex> и <tex>g_l</tex>. Например, если функция <tex>g_l(x_1, x_2, \ldots, x_n)</tex> принимает истинное значение, когда аргументы c номерами <tex>i_1, i_2, \ldots, i_m</tex> ложны, а все остальные истины, то функцию <tex> \wedge </tex> можно выразить как <tex>g_l([\lnot]x_1, [\lnot]x_2, \ldots, [\lnot]x_n)</tex>, где <tex>\lnot</tex> ставится перед аргументами с номерами <tex>i_1, i_2, \ldots, i_m</tex>. |
# Присутствует один член. Выразим <tex> \wedge </tex> через <tex> \neg </tex> и <tex>g_l</tex> аналогично пункту 3. | # Присутствует один член. Выразим <tex> \wedge </tex> через <tex> \neg </tex> и <tex>g_l</tex> аналогично пункту 3. | ||
Версия 15:25, 28 декабря 2017
Содержание
Полные системы функций
Определение: |
Если любая булева функция, являющаяся суперпозицией функций некоторого множества, принадлежит этому множеству, то такое множество называют замкнутым (англ. closed set). |
Определение: |
Замыканием (англ. сlosure) множества функций называется такое подмножество всех булевых функций, что любую из этих функций можно выразить через функции исходного множества. |
Определение: |
Множество булевых функций называется полной системой (англ. complete set), если замыкание этого множества совпадает с множеством всех функций. |
Определение: |
Полная система функций называется безызбыточной (англ. irredundant functions), если она перестает быть полной при исключении из неё любого элемента. |
Американский математик Эмиль Пост сформулировал необходимое и достаточное условие полноты системы булевых функций. Для этого он ввел в рассмотрение следующие замкнутые классы булевых функций:
- функции, сохраняющие константу и ,
- самодвойственныые функции ,
- монотонные функции ,
- линейные функции .
Замкнутые классы булевых функций
Класс функций сохраняющих ноль
.Определение: |
Говорят, что функция сохраняет ноль, если | .
Класс функций сохраняющих единицу
.Определение: |
Говорят, что функция сохраняет единицу, если | .
Класс самодвойственных функций
.Определение: |
Говорят, что функция самодвойственна (англ. self-dual), если | . Иными словами, функция называется самодвойственной, если на противоположных наборах она принимает противоположные значения.
Класс монотонных функций .
Определение: |
Говорят, что функция монотонна (англ. monotonic function) , если | .
Класс линейных функций .
Определение: |
Говорят, что функция линейна (англ. linear function), если существуют такие
| , где , что для любых имеет место равенство:
Количество линейных функций от
переменных равно .Функция является линейной тогда, и только тогда, когда в ее полиноме Жегалкина присутствуют слагаемые, каждое из которых зависит не более чем от одной переменной. Построить полином Жегалкина можно с помощью преобразования Мебиуса.
Формулировка и доказательство критерия Поста
Теорема: |
Набор булевых функций является полным тогда и только тогда, когда он не содержится полностью ни в одном из классов , иными словами, когда в нем имеется хотя бы одна функция, не сохраняющая ноль, хотя бы одна функция, не сохраняющая один, хотя бы одна несамодвойственная функция, хотя бы одна немонотонная функция и хотя бы одна нелинейная функция. |
Доказательство: |
Необходимость.Заметим, что необходимость этого утверждения очевидна, так как если бы все функции из набора входили в один из перечисленных классов, то и все суперпозиции, а, значит, и замыкание набора входило бы в этот класс, и набор не мог бы быть полным.Достаточность.Докажем, что если набор не содержится полностью ни в одном из данных классов, то он является полным.
Таким образом, возможны четыре варианта:
Используем несамодвойственную функцию . По определению, найдется такой вектор , что . Где .Рассмотрим , где либо , при . Либо , при . Нетрудно заметить, что . Таким образом мы получили одну из констант.
Рассмотрим немонотонную функцию . Существуют такие , что , , зафиксируем все , тогда .В итоге имеем три функции: , , .Используем нелинейную функцию полинома Жегалкина), выберем тот, в котором минимальное количество элементов. Все аргументы кроме двух в этом члене приравняем единице, оставшиеся два назовем и . Все элементы, не входящие в данный член, примем равными нулю. Тогда эта функция будет представима в виде , где в квадратных скобках указаны члены, которые могут и не присутствовать (остальные слагаемые будут равны нулю, поскольку в них есть как минимум один аргумент, не входящий в выбранный член, так как в выбранном члене минимальное число элементов). . Среди нелинейных членов (ее представления в видеРассмотрим несколько вариантов:
В итоге получим функциюСДНФ, то есть выразить в данном базисе. Если же функция равна тождественному нулю, то ее можно представить в виде . , а также либо функцию , либо функцию . Поскольку функцию можно выразить через и , а функцию через и , то мы получили базис , , . Любую булеву функцию, не равную тождественному нулю, можно представить в форме
|
Примеры
Согласно критерию Поста система булевых функций полна тогда и только тогда, когда она не содержится целиком ни в одном из классов
, , , , .В частности, если функция не входит ни в один из классов Поста, она сама по себе формирует полную систему. В качестве примера можно назвать штрих Шеффера или стрелку Пирса.
Широко известны такие полные системы булевых функций:
- (конъюнкция, дизъюнкция, отрицание);
- (конъюнкция, сложение по модулю два, константа один).
Первая система используется, например, для представления функций в виде дизъюнктивных и конъюнктивных нормальных форм, вторая — для представления в виде полиномов Жегалкина.
Первая из упоминавшихся выше полных систем безызбыточной не является, поскольку согласно законам де Моргана либо дизъюнкцию, либо конъюнкцию можно исключить из системы и восстановить с помощью остальных двух функций. Вторая система является безызбыточной — все три её элемента необходимы для полноты системы.
Теорема о максимальном числе функций в базисе: максимально возможное число булевых функций в базисе — четыре.
Иногда говорят о системе функций, полной в некотором замкнутом классе, и, соответственно, о базисе этого класса. Например, систему
можно назвать базисом класса линейных функций.