Умножение перестановок, обратная перестановка, группа перестановок — различия между версиями
| Denis (обсуждение | вклад)  (цвет комментария изменён на зелёный) | Denis (обсуждение | вклад)  | ||
| Строка 3: | Строка 3: | ||
| {{Определение | {{Определение | ||
| |definition= | |definition= | ||
| − | '''Умножением''' (композицией) перестановок,представленных в виде целочисленных функций <tex> a_i </tex>, где <tex>i - </tex> позиция элемента, а <tex> a_i </tex> — его номер, называется перестановка, получаемая по следующему правилу: | + | '''Умножением''' (англ. ''multiplication'') или '''композицией''' (англ. ''composition'') перестановок,представленных в виде целочисленных функций <tex> a_i </tex>, где <tex>i - </tex> позиция элемента, а <tex> a_i </tex> — его номер, называется перестановка, получаемая по следующему правилу: | 
| <tex> (ab)_i = a_{b_i} </tex> | <tex> (ab)_i = a_{b_i} </tex> | ||
| Строка 41: | Строка 41: | ||
| |definition= | |definition= | ||
| − | '''Обратной перестановкой''' (англ. an inverse permutation) <tex> a^{-1} </tex> к перестановке <tex> a </tex> называется такая перестановка, что: | + | '''Обратной перестановкой''' (англ. ''an inverse permutation'') <tex> a^{-1} </tex> к перестановке <tex> a </tex> называется такая перестановка, что: | 
| <tex> (a^{-1}a)_i = (aa^{-1})_i = i </tex> | <tex> (a^{-1}a)_i = (aa^{-1})_i = i </tex> | ||
| Строка 50: | Строка 50: | ||
| |id = def_involution | |id = def_involution | ||
| |definition= | |definition= | ||
| − | Перестановка, равная своей обратной, называется '''инволюцией''' (англ. involution): | + | Перестановка, равная своей обратной, называется '''инволюцией''' (англ. ''involution''): | 
| <tex> a_i = a^{-1}_i \Rightarrow (aa ^{-1})_i = (aa)_i = a_{a_i} = i </tex>, то есть её представление в виде циклов не содержит цикла, размер которого больше двух. | <tex> a_i = a^{-1}_i \Rightarrow (aa ^{-1})_i = (aa)_i = a_{a_i} = i </tex>, то есть её представление в виде циклов не содержит цикла, размер которого больше двух. | ||
| Строка 74: | Строка 74: | ||
| |definition= | |definition= | ||
| − | Перестановка, меняющая местами только два элемента, называется '''транспозицией''' (англ. transposition).   | + | Перестановка, меняющая местами только два элемента, называется '''транспозицией''' (англ. ''transposition'').   | 
| }} | }} | ||
| Строка 124: | Строка 124: | ||
| {{Определение | {{Определение | ||
| |definition= | |definition= | ||
| − | '''Группой''' называется множество <tex> M </tex> с заданной на нём бинарной операцией <tex> \circ: МM\times M \longrightarrow M</tex>, удовлетворяющей следующим свойствам: | + | '''Группой''' (англ. ''group'') называется множество <tex> M </tex> с заданной на нём бинарной операцией <tex> \circ: МM\times M \longrightarrow M</tex>, удовлетворяющей следующим свойствам: | 
| # <tex> (g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3) </tex> — ассоциативность соответствующей бинарной операции. | # <tex> (g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3) </tex> — ассоциативность соответствующей бинарной операции. | ||
| Строка 134: | Строка 134: | ||
| {{Утверждение | {{Утверждение | ||
| |statement= | |statement= | ||
| − | Множество перестановок с <tex> n </tex> элементами с операцией умножения является группой (часто группу перестановок называют симметрической, и обозначают <tex> S_n </tex>). | + | Множество перестановок с <tex> n </tex> элементами с операцией умножения является группой (часто группу перестановок называют симметрической (англ. ''symmetric group''), и обозначают <tex> S_n </tex>). | 
| |proof= | |proof= | ||
| Свойства <tex>1</tex> и <tex>3</tex> доказаны выше, а в качестве нейтрального элемента выступает тождественная перестановка (<tex> \pi_i = i </tex>).   | Свойства <tex>1</tex> и <tex>3</tex> доказаны выше, а в качестве нейтрального элемента выступает тождественная перестановка (<tex> \pi_i = i </tex>).   | ||
| Строка 147: | Строка 147: | ||
| {{Определение | {{Определение | ||
| |definition= | |definition= | ||
| − | '''Группа чётных перестановок''' (англ. alternating group)<tex> A_n </tex> является подгруппой симметричной группы перестановок, образованной всеми чётными перестановками. Композиция не выводит из группы, так как если представить каждую перестановку группы в виде чётного числа транспозиций и перемножить их, чётность не изменится. | + | '''Группа чётных перестановок''' (англ. ''alternating group'')<tex> A_n </tex> является подгруппой симметричной группы перестановок, образованной всеми чётными перестановками. Композиция не выводит из группы, так как если представить каждую перестановку группы в виде чётного числа транспозиций и перемножить их, чётность не изменится. | 
| }}   | }}   | ||
| Строка 161: | Строка 161: | ||
| {{Определение | {{Определение | ||
| |definition= | |definition= | ||
| − | '''Подстановкой''' (англ. substitution) называется всякое взаимно однозначное отображение <tex> A </tex> множества первых <tex>n</tex> натуральных чисел на себя.    | + | '''Подстановкой''' (англ. ''substitution'') называется всякое взаимно однозначное отображение <tex> A </tex> множества первых <tex>n</tex> натуральных чисел на себя.    | 
| }} | }} | ||
| Строка 173: | Строка 173: | ||
| {{Определение | {{Определение | ||
| |definition= | |definition= | ||
| − | '''Группой подстановок''' (англ. group of substitutions) называется некоторая совокупность подстановок, замкнутая относительно композиции отображений, определяющей бинарную операцию для подстановок на одном и том же множестве. | + | '''Группой подстановок''' (англ. ''group of substitutions'') называется некоторая совокупность подстановок, замкнутая относительно композиции отображений, определяющей бинарную операцию для подстановок на одном и том же множестве. | 
| }} | }} | ||
Версия 23:54, 3 января 2018
Содержание
Умножение перестановок
| Определение: | 
| Умножением (англ. multiplication) или композицией (англ. composition) перестановок,представленных в виде целочисленных функций , где позиция элемента, а — его номер, называется перестановка, получаемая по следующему правилу: | 
| Утверждение: | 
| Умножение перестановок ассоциативно:
 | 
| Доказывается простым раскрытием скобок. | 
Пример
или
Обратная перестановка
| Определение: | 
| Обратной перестановкой (англ. an inverse permutation) к перестановке называется такая перестановка, что: | 
| Определение: | 
| Перестановка, равная своей обратной, называется инволюцией (англ. involution): , то есть её представление в виде циклов не содержит цикла, размер которого больше двух. | 
| Утверждение: | 
| Количество инволюционных перестановок длины  может быть получено по формуле: , где  | 
| Существует инволюций, при . Число инволюций, содержащих цикл , где , . Имеем, что | 
| Определение: | 
| Перестановка, содержащая чётное количество инверсий, называется чётной, в противном случае нечётной. | 
| Определение: | 
| Перестановка, меняющая местами только два элемента, называется транспозицией (англ. transposition). | 
| Лемма: | 
| Если в перестановке, длина которой больше , поменять местами  элемента, то её четность изменится. | 
| Доказательство: | 
| Для элементов, стоящих рядом, истинность утверждения очевидна: их взаимное расположение относительно других элементов не изменилось, а транспозиция этих чисел изменяет количество инверсий на единицу. Пусть теперь между перемещаемыми элементами и находятся элементов, то есть перестановка имеет вид: . Сначала поменяем последовательно с числами , а затем число с рядом стоящими . В итоге мы выполним транспозиций рядом стоящих элементов, то есть чётность перестановки изменится. | 
Получение обратной перестановки
Пусть в массиве содержится перестановка, тогда в массиве , после выполнения алгоритма, будет содержаться обратная перестановка.
fun reversePerm(p : int[], rep : int[])
   int n = p.size;
   for i = 0 to n
      for j = 0 to n
         if p[j] == i + 1
            rep[i] = j + 1;
При представлении перестановки в виде циклов обратную перестановку можно легко получить, инвертировав все ребра в циклах.
Отсюда следует более эффективный алгоритм, где - массив посещённых элементов:
   fun reversePerm (visited : boolean[], p : int[], rep : int[])
      int n = p.size;
      for i = 0 to n
         if visited[i]
            continue;
         // инвертировать цикл, начинающийся в позиции  
         int last = i;
         int j = p[i];
         while true 
            int next = p[j];
            p[j] = last;
            visited[j] = true;
            if j == i
               break;
            last = j;
            j = next;
Группа перестановок
| Определение: | 
| Группой (англ. group) называется множество  с заданной на нём бинарной операцией , удовлетворяющей следующим свойствам: 
 | 
| Утверждение: | 
| Множество перестановок с  элементами с операцией умножения является группой (часто группу перестановок называют симметрической (англ. symmetric group), и обозначают ). | 
| Свойства и доказаны выше, а в качестве нейтрального элемента выступает тождественная перестановка (). | 
Мощность симметрической группы:
Теорема Кэли утверждает, что любая конечная группа изоморфна подгруппе некоторой группе перестановок.
Группа чётных перестановок
| Определение: | 
| Группа чётных перестановок (англ. alternating group) является подгруппой симметричной группы перестановок, образованной всеми чётными перестановками. Композиция не выводит из группы, так как если представить каждую перестановку группы в виде чётного числа транспозиций и перемножить их, чётность не изменится. | 
| Утверждение: | 
| Количество чётных перестановок длины  равно количеству нечётных и равно  | 
| Пусть число число чётных перестановок , а нечётных . Сделаем транспозицию для всех чётных перестановок. Получим нечётных различных перестановок, то есть . Проделаем то же самое с нечётными перестановками. Получим, что , то есть и . | 
Группа подстановок
| Определение: | 
| Подстановкой (англ. substitution) называется всякое взаимно однозначное отображение множества первых натуральных чисел на себя. | 
Всякая подстановка  может быть записана при помощи двух перестановок, подписанных одна под другой:
Где через обозначается то число, в которое при подстановке переходит число .
| Определение: | 
| Группой подстановок (англ. group of substitutions) называется некоторая совокупность подстановок, замкнутая относительно композиции отображений, определяющей бинарную операцию для подстановок на одном и том же множестве. | 
Источники и литература
- https://en.wikipedia.org/wiki/Involution_(mathematics)
- Н. И. Яцкин, Алгебра Теоремы и алгоритмы, Издательство «Ивановский государственный университет», 2006 г., стр. 161
