Символ Похгаммера — различия между версиями
(→Источники информации) |
|||
Строка 2: | Строка 2: | ||
|definition= | |definition= | ||
В математике '''убывающим факториалом''' (англ. ''falling factorial'') (иногда называется '''нисходящим факториалом''', '''постепенно убывающим факториалом''' или '''нижним факториалом''') обозначают: | В математике '''убывающим факториалом''' (англ. ''falling factorial'') (иногда называется '''нисходящим факториалом''', '''постепенно убывающим факториалом''' или '''нижним факториалом''') обозначают: | ||
− | :<tex>(x)_{n}=x^{\underline{n}}=x(x-1)(x-2)\cdots(x-n+1)=\ | + | :<tex>(x)_{n}=x^{\underline{n}}=x(x-1)(x-2)\cdots(x-n+1)=\prod\limits_{k=1}^{n}(x-(k-1))=\prod\limits_{k=0}^{n-1}(x-k)</tex> |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
'''Растущий факториал''' (англ. ''rising factorial'') (иногда называется '''функцией Похгаммера''', '''многочленом Похгаммера''', '''восходящим факториалом''', '''постепенно растущим произведением''' или '''верхним факториалом''') определяется следующей формулой: | '''Растущий факториал''' (англ. ''rising factorial'') (иногда называется '''функцией Похгаммера''', '''многочленом Похгаммера''', '''восходящим факториалом''', '''постепенно растущим произведением''' или '''верхним факториалом''') определяется следующей формулой: | ||
− | :<tex>x^{(n)}=x^{\overline{n}}=x(x+1)(x+2)\cdots(x+n-1)=\ | + | :<tex>x^{(n)}=x^{\overline{n}}=x(x+1)(x+2)\cdots(x+n-1)=\prod\limits_{k=1}^{n}(x+(k-1))=\prod\limits_{k=0}^{n-1}(x+k). </tex> |
}} | }} | ||
Строка 152: | Строка 152: | ||
По [[wikipedia:Multiplication theorem|теореме об умножении]] получаем следующие выражения для растущего факториала: | По [[wikipedia:Multiplication theorem|теореме об умножении]] получаем следующие выражения для растущего факториала: | ||
− | :<tex dpi=150>(x)_{k+mn} = (x)_k m^{mn} \ | + | :<tex dpi=150>(x)_{k+mn} = (x)_k m^{mn} \prod\limits_{j=0}^{m-1} \left(\frac{x+j+k}{m}\right)_n,\ m \in \mathbb{N} </tex> |
− | :<tex dpi=150>(ax+b)_n = x^n \ | + | :<tex dpi=150>(ax+b)_n = x^n \prod\limits_{k=0}^{x-1} \left(a+\frac{b+k}{x}\right)_{n/x},\ x \in \mathbb{Z}^{+} </tex> |
:<tex dpi=150>(2x)_{2n} = 2^{2n} (x)_n \left(x+\frac{1}{2}\right)_n. </tex> | :<tex dpi=150>(2x)_{2n} = 2^{2n} (x)_n \left(x+\frac{1}{2}\right)_n. </tex> | ||
Строка 171: | Строка 171: | ||
Для арифметической функции <tex>f: \mathbb{N} \rightarrow \mathbb{C}</tex> и параметров <tex>x, t</tex> определен обобщенное факториальное произведение вида: | Для арифметической функции <tex>f: \mathbb{N} \rightarrow \mathbb{C}</tex> и параметров <tex>x, t</tex> определен обобщенное факториальное произведение вида: | ||
− | :<tex dpi=150>(x)_{n,f,t} = \ | + | :<tex dpi=150>(x)_{n,f,t} = \prod\limits_{k=1}^{n-1} \left(x+\frac{f(k)}{t^k}\right)</tex> |
== См.также == | == См.также == |
Версия 20:01, 19 января 2018
Определение: |
В математике убывающим факториалом (англ. falling factorial) (иногда называется нисходящим факториалом, постепенно убывающим факториалом или нижним факториалом) обозначают:
|
Определение: |
Растущий факториал (англ. rising factorial) (иногда называется функцией Похгаммера, многочленом Похгаммера, восходящим факториалом, постепенно растущим произведением или верхним факториалом) определяется следующей формулой:
|
Грахам, Кнут и Паташник[1] предложили произносить эти записи как " растущий к " и " убывающий к " соответственно.
При
значение принимается равным (пустое произведение).В зависимости от контекста символ Похгаммера может обозначать как растущий факториал, так и убывающий факториал. Сам Лео Август Похгаммер для себя использовал
в другом смысле - для обозначения биномиального коэффициента .Когда инъективных отображений из множества с элементами во множество из элементов. Для обозначения этого числа часто применяют обозначения и . Символ Похгаммера в основном используется в алгебре, где — переменная, то есть есть ни что иное как многочлен степени от .
неотрицательное целое число, равняется числуДругие формы записи убывающего факториала:
, , , или .Другое обозначение растущего факториала [2]
реже встречается, чем . Обозначение используется для растущего факториала, запись обычно применяется для обозначения убывающего факториала для избежания недоразумений.Содержание
Примеры
Несколько первых растущих факториалов:
Несколько первых убывающих факториалов:
Коэффициенты в выражениях являются числами Стирлинга первого рода.
Свойства
Убывающий и растущий факториалы определены так же и в любом ассоциативном кольце с единицей и, следовательно,
может быть даже комплексным числом, многочленом с комплексными коэффициентами или любой функцией определенной на комплексных числах.Связывающие коэффициенты
Так как убывающие факториалы — базис кольца многочленов, мы можем переписать произведение двух из них как линейную комбинацию убывающих факториалов:
Определение: |
Коэффициенты | называются связывающими коэффициентами (англ. connection coefficients). Связывающие коэффициенты имеют комбинаторную интерпретацию как число способов объединить элементов из множеств размера и .
Биномиальный коэффициент
Растущий и убывающий факториалы могут быть использованы для обозначения биномиального коэффициента:
Таким образом, многие свойства биномиальных коэффициентов справедливы для убывающих и растущих факториалов.
Связь убывающего и растущего факториалов
Растущий факториал может быть выражен как убывающий факториал, начинающийся с другого конца,
или как убывающий с противоположным аргументом,
Отношение двух символов Похгаммера определяется как:
Кроме того, мы можем развернуть экспоненты и убывающие факториалы как:
Числа Стирлинга второго рода
Убывающий и растущий факториалы выражаются друг через друга при помощи чисел Стирлинга второго рода: [3]
Числа Лаха
Убывающий и растущий факториалы связаны друг с другом числами Лаха: [3]
Утверждение: |
Подставим целое из отрезка , тогда получим (будем считать, что равно бесконечности):Поделим обе части на , а из правой части уберём слагаемые, равные нулю, — получим:Это тождество очевидно из комбинаторики, так как обе части равны числу способов выбрать из Многочлены, стоящие в левой и правой частях тождества, оказались равны в элементов, разделённых на два множества по и элементов, элементов. С одной стороны нельзя не признать, что это левая часть тождества по определению сочетания. С другой стороны нельзя не согласиться, что это правая часть тождества, в котором означает количество элементов, берущихся из множества размера . точке и при этом имеют степень не больше , то есть они формально совпадают, что и требовалось доказать. |
Гамма функция
Растущий факториал может быть продолжен на вещественные значения Гамма функции при условии, что и вещественные числа, но не отрицательные целые.
, но с использованиемУтверждение: |
— по определению. Значит,
Объединив эти два факта, получим, что:
|
то же самое и про убывающий факториал:
Утверждение: |
— по определению. Значит,
Объединив эти два факта, получим, что:
|
Дифференциал
Если
означает производную по , тоТеорема об умножении
По теореме об умножении получаем следующие выражения для растущего факториала:
Обобщения
Обобщенный символ Похгаммера называется обобщённый символ Похгаммера, используемый в многомерном математическом анализе. Также существует q-аналог — q-Похгаммер символ.
Обобщение убывающего факториала, в которой функция вычисляется по нисходящей арифметической последовательности целых чисел, а значения перемножаются как:
где
декремент и число факторов. Соответствующее обобщения растущего факториала:Эта запись объединяет растущий и убывающий факториалы, которые
и соответственно.Для арифметической функции
и параметров определен обобщенное факториальное произведение вида:См.также
- Гамма функция
- Числа Стирлинга первого рода
- Числа Стирлинга второго рода
- Инъективное отображение
- Обобщённый символ Похгаммера
- q-Похгаммер символ
- Числа Лаха
- Теорема об умножении
- q-аналог
Примeчания
- ↑ Ronald L. Graham, Donald E. Knuth and Oren Patashnik in their book Concrete Mathematics ( ), Addison-Wesley, Reading MA. ISBN , pp. ,
- ↑ According to Knuth, The Art of Computer Programming, Vol. , rd ed., p. .
- ↑ 3,0 3,1 Wolfram Functions Site — Introduction to the factorials and binomials