Теорема о связи между рациональностью производящей функции и линейной рекуррентностью задаваемой ей последовательности — различия между версиями
Строка 10: | Строка 10: | ||
Остаётся ситуация, при которой <tex>q_0 \neq 0</tex>. Тогда необходимо разделить <tex>P(t), Q(t)</tex> на <tex>q_0</tex>, чтобы <tex>q_0</tex> стало равным <tex>1</tex>. В дальнейшем, без ограничения общности, полагаем <tex>q_0 = 1</tex> | Остаётся ситуация, при которой <tex>q_0 \neq 0</tex>. Тогда необходимо разделить <tex>P(t), Q(t)</tex> на <tex>q_0</tex>, чтобы <tex>q_0</tex> стало равным <tex>1</tex>. В дальнейшем, без ограничения общности, полагаем <tex>q_0 = 1</tex> | ||
+ | |||
+ | {{Определение | ||
+ | |id=def_linear. | ||
+ | |neat = 1 - параметр нужен для того, чтобы определение не растягивалось на всю страницу(не обязательно) | ||
+ | |definition=Последовательность <tex>a_0, a_1, ..., a_n, ... </tex> называется заданной линейной рекуррентой, если её члены <tex>a_0 ... a_{k - 1} </tex> заданы, а <tex>\forall n \geqslant k </tex> выполняется <tex> a_n = c_1 \cdot a_{n - 1} + ... + c_k \cdot a_{n - k}</tex> | ||
+ | }} | ||
+ | |||
+ | {{Теорема | ||
+ | |id=th_main. | ||
+ | |statement=<tex>a_0, a_1, ..., a_n, ... </tex> задана линейной рекуррентой с <tex>k</tex> первыми заданными членами <tex>\Leftrightarrow</tex> её производящая функция <tex>F(t)</tex> является дробно-рациональной, причём она представима в виде <tex>F(t) = \frac{P(t)}{Q(t)}, deg Q(t) = k, deg P(t) < k</tex> | ||
+ | |proof=доказательство (необязательно) | ||
+ | }} |
Версия 00:22, 3 марта 2018
Определение:
Производящая функция
называется дробно-рациональной, если она представима в виде отношения двух многочленов, то есть , где - многочлены конечной степени
Отметим, что если и , то оба многочлена могут быть разделены на . В таком случае необходимо разделить оба многочлена на , чтобы стало не равным нулю.
Ситуация, при которой правилам деления формальных степенных рядов.
, а невозможна, поОстаётся ситуация, при которой
. Тогда необходимо разделить на , чтобы стало равным . В дальнейшем, без ограничения общности, полагаем
Определение:
Последовательность
называется заданной линейной рекуррентой, если её члены заданы, а выполняется
Теорема: |
задана линейной рекуррентой с первыми заданными членами её производящая функция является дробно-рациональной, причём она представима в виде |
Доказательство: |
доказательство (необязательно) |