Теорема о связи между рациональностью производящей функции и линейной рекуррентностью задаваемой ей последовательности — различия между версиями
(→Необходимые определения) |
(→Источники информации) |
||
| Строка 76: | Строка 76: | ||
== Источники информации == | == Источники информации == | ||
| − | С. А. Ландо - Лекции о производящих функциях, стр 24 | + | С. А. Ландо {{---}} Лекции о производящих функциях, стр 24 |
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Комбинаторика]] | [[Категория: Комбинаторика]] | ||
[[Категория: Производящие функции]] | [[Категория: Производящие функции]] | ||
Версия 18:35, 4 марта 2018
Необходимые определения
Отметим, что если и , то оба многочлена могут быть разделены на . В таком случае необходимо разделить оба многочлена на , чтобы стало не равным нулю.
Ситуация, при которой , а невозможна, по правилам деления формальных степенных рядов.
Остаётся ситуация, при которой . Тогда необходимо разделить на , чтобы стало равным . В дальнейшем, без ограничения общности, полагаем
Теорема
| Теорема: |
задана линейной рекуррентой с первыми заданными членами её производящая функция является дробно-рациональной, причём она представима в виде |
| Доказательство: |
|
. Пусть . Тогда . Пусть имеет вид . Так как . Расписывая по определению произведения степенных рядов, получаем Тогда (так как ) Так как , а
Тогда
Напишем друг под другом несколько производящих функций:
Так как , то все коэффициенты старше -ой степени включительно обнулятся. Тогда . Обозначим , а Тогда |
Смотри также
Арифметические действия с формальными степенными рядами
Источники информации
С. А. Ландо — Лекции о производящих функциях, стр 24