Теорема о связи между рациональностью производящей функции и линейной рекуррентностью задаваемой ей последовательности — различия между версиями
(→Необходимые определения) |
|||
Строка 18: | Строка 18: | ||
|definition=Последовательность <tex>a_0, a_1, \ldots, a_n, \ldots </tex> называется '''заданной линейной рекуррентой''' (англ. ''constant-recursive''), если её члены <tex>a_0 \ldots a_{k - 1} </tex> заданы, а <tex>\forall n \geqslant k </tex> выполняется <tex> a_n = c_1 \cdot a_{n - 1} + \ldots + c_k \cdot a_{n - k}</tex> | |definition=Последовательность <tex>a_0, a_1, \ldots, a_n, \ldots </tex> называется '''заданной линейной рекуррентой''' (англ. ''constant-recursive''), если её члены <tex>a_0 \ldots a_{k - 1} </tex> заданы, а <tex>\forall n \geqslant k </tex> выполняется <tex> a_n = c_1 \cdot a_{n - 1} + \ldots + c_k \cdot a_{n - k}</tex> | ||
}} | }} | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
== Теорема о связи этих понятий == | == Теорема о связи этих понятий == |
Версия 00:01, 5 марта 2018
Содержание
Необходимые определения
Определение:
Производящая функция называется дробно-рациональной(англ. rational), если она представима в виде отношения двух многочленов, то есть , где — многочлены конечной степени
Отметим, что если и , то оба многочлена могут быть разделены на . В таком случае необходимо разделить оба многочлена на , чтобы стало не равным нулю.
Ситуация, при которой правилам деления формальных степенных рядов.
, а невозможна, поОстаётся ситуация, при которой
. Тогда необходимо разделить на , чтобы стало равным . В дальнейшем, без ограничения общности, полагаем
Определение:
Последовательность
называется заданной линейной рекуррентой (англ. constant-recursive), если её члены заданы, а выполняется
Теорема о связи этих понятий
Теорема: |
Последовательность задана линейной рекуррентой с первыми заданными членами её производящая функция является дробно-рациональной, причём она представима в виде |
Доказательство: |
. Пусть . Тогда . Пусть имеет вид . Так как произведения степенных рядов, получаем выполнено . Расписывая по определениюТогда (так как )Так как , а , тоТогда
Напишем друг под другом несколько производящих функций:
Почленно складывая эти формальные степенные ряды, получаем
Так как , то все коэффициенты старше -ой степени включительно обнулятся.Тогда .Обозначим ,а Тогда |
Примеры применения теоремы
- Вычислим производящую функцию последовательности
- Так как последовательность задана линейной рекуррентой, её производящая функция, согласно теореме, имеет вид , где (так как ), а .
- Будем искать производящую функцию в виде
- Пусть , тогда , следовательно
- Пользуясь правилом перемножения формальных степенных рядов, получаем
- Следовательно,
- Таким образом,
- Частным случаем этой формулы являются соотношения и
- Вычислим производящую функцию последовательности Фибоначчи
- Так как последовательность задана линейной рекуррентой, её производящая функция, согласно теореме, имеет вид , где (так как ), а .
- Будем искать производящую функцию в виде
- Пусть , тогда , следовательно
- Пользуясь правилами перемножения формальных степенных рядов, получаем , в частности, , а
- Таким образом,
См. также
Источники информации
С. А. Ландо — Лекции о производящих функциях, стр 24