Расчёт вероятности поглощения в состоянии — различия между версиями
| Hazzus (обсуждение | вклад) | Hazzus (обсуждение | вклад)  | ||
| Строка 1: | Строка 1: | ||
| Поглощающее(существенное) состояние цепи Маркова - состояние с вероятностью перехода в самого себя <tex>p_{ii}=1</tex>. | Поглощающее(существенное) состояние цепи Маркова - состояние с вероятностью перехода в самого себя <tex>p_{ii}=1</tex>. | ||
| − | Составим матрицу <tex>G</tex>, элементы которой <tex>g_{ij}</tex> равны вероятности того, что, выйдя из i, попадём в поглощающее состояние j. | + | Составим матрицу <tex>G</tex>, элементы которой <tex>g_{ij}</tex> равны вероятности того, что, выйдя из <tex>i</tex>, попадём в поглощающее состояние <tex>j</tex>. | 
| {{Теорема | {{Теорема | ||
| |statement= | |statement= | ||
| Строка 7: | Строка 7: | ||
| Пусть этот переход будет осуществлён за <tex>r</tex> шагов:  <tex>i</tex> →  <tex>i_{1}</tex> → <tex>i_{2}</tex> → ... → <tex>i_{r-1}</tex> → j, где все <tex>i, i_{1}, ... i_{r-1}</tex> являются несущественными. | Пусть этот переход будет осуществлён за <tex>r</tex> шагов:  <tex>i</tex> →  <tex>i_{1}</tex> → <tex>i_{2}</tex> → ... → <tex>i_{r-1}</tex> → j, где все <tex>i, i_{1}, ... i_{r-1}</tex> являются несущественными. | ||
| Тогда рассмотрим сумму <tex>\sum\limits_{\forall(i_{1} ... i_{r-1})} {p_{i, i_{1}} \cdot p_{i_{1}, i_{2}} \cdot ... \cdot p_{i_{r-1}, j}} = Q^{r-1} \cdot R</tex>, где <tex>Q</tex> - матрица переходов между несущественными состояниями, <tex>R</tex> - из несущественного в существенное.   | Тогда рассмотрим сумму <tex>\sum\limits_{\forall(i_{1} ... i_{r-1})} {p_{i, i_{1}} \cdot p_{i_{1}, i_{2}} \cdot ... \cdot p_{i_{r-1}, j}} = Q^{r-1} \cdot R</tex>, где <tex>Q</tex> - матрица переходов между несущественными состояниями, <tex>R</tex> - из несущественного в существенное.   | ||
| − | Матрица G определяется их суммированием по всем длинам пути из i в j: <tex>G = \sum\limits_{r = 1}^{\infty}{Q^{r-1} \cdot R} = (I + Q + Q^{2} + Q^{3} + ...) \cdot R = NR</tex>, т.к. <tex>(I + Q + Q^2 + ...) \cdot (I - Q) = I - Q + Q - Q^{2} + ... = I</tex>, а фундаментальная матрица марковской цепи <tex>N = (I - Q)^{-1}</tex> }} | + | Матрица <tex>G</tex> определяется их суммированием по всем длинам пути из i в j: <tex>G = \sum\limits_{r = 1}^{\infty}{Q^{r-1} \cdot R} = (I + Q + Q^{2} + Q^{3} + ...) \cdot R = NR</tex>, т.к. <tex>(I + Q + Q^2 + ...) \cdot (I - Q) = I - Q + Q - Q^{2} + ... = I</tex>, а фундаментальная матрица марковской цепи <tex>N = (I - Q)^{-1}</tex> }} | 
| =Псевдокод= | =Псевдокод= | ||
| Пусть <tex>n</tex> - количество состояний Марковской цепи, <tex>m</tex> - количество переходов. Состояния пронумерованы от <tex>0</tex> до <tex>n - 1</tex>, переходы от <tex>0</tex> до <tex>m - 1</tex>.  Входные данные хранятся в массиве <tex>input</tex> где <tex>i</tex>-ая строка характеризует <tex>i</tex>-ый переход таким образом: <tex>input[i][2]</tex> - вероятность перехода из состояния <tex>input[i][0]</tex> в состояние <tex>input[i][1]</tex>. | Пусть <tex>n</tex> - количество состояний Марковской цепи, <tex>m</tex> - количество переходов. Состояния пронумерованы от <tex>0</tex> до <tex>n - 1</tex>, переходы от <tex>0</tex> до <tex>m - 1</tex>.  Входные данные хранятся в массиве <tex>input</tex> где <tex>i</tex>-ая строка характеризует <tex>i</tex>-ый переход таким образом: <tex>input[i][2]</tex> - вероятность перехода из состояния <tex>input[i][0]</tex> в состояние <tex>input[i][1]</tex>. | ||
Версия 13:38, 12 марта 2018
Поглощающее(существенное) состояние цепи Маркова - состояние с вероятностью перехода в самого себя . Составим матрицу , элементы которой равны вероятности того, что, выйдя из , попадём в поглощающее состояние .
| Теорема: | 
| Доказательство: | 
| Пусть этот переход будет осуществлён за шагов: → → → ... → → j, где все являются несущественными. Тогда рассмотрим сумму , где - матрица переходов между несущественными состояниями, - из несущественного в существенное.Матрица определяется их суммированием по всем длинам пути из i в j: , т.к. , а фундаментальная матрица марковской цепи | 
Псевдокод
Пусть  - количество состояний Марковской цепи,  - количество переходов. Состояния пронумерованы от  до , переходы от  до .  Входные данные хранятся в массиве  где -ая строка характеризует -ый переход таким образом:  - вероятность перехода из состояния  в состояние .
Создадим массив  типа boolean, где -ое true обозначает что -ое состояние является поглощающим и наоборот. Обнаружим поглощающие состояния по такому признаку: если состояние поглощающее, то с вероятностью 1 оно переходит само в себя. Также посчитаем количество поглощающих состояний .
for i = 0 to m - 1
   if input[i][0] == input[i][1] and input[i][2] == 1
      absorbing[input[i][0]] = true
      abs++
Найдем число несущественных состояний . Теперь нужно заполнить матрицы  (переходов между несущественными состояниями) и  (переходов из несущественных состояний в поглощающие). Для этого создадим сначала массив  где -ый элемент указывает под каким номером будет находиться -ое состояние среди существенных если оно существенное или несущественных в обратном случае, и заполним эти массивы.
count_q = 0
count_r = 0
for i = 0 to n - 1
   if absorbing[i]
      position[i] = count_r
      count_r++
   else 
      position[i] = count_q
      count_q++
for i = 0 to m - 1
   if absorbing[input[i][1]]
      if !absorbing[input[i][0]]
         R[position[input[i][0]]][position[input[i][1]]] = input[i][2]
   else
      Q[position[input[i][0]]][position[input[i][1]]] = input[i][2]
Найдем Матрицу  и создадим единичную матрицу .
for i = 0 to nonabs - 1
   N[i][i] = 1
   E[i][i] = 1
   for j = 0 to nonabs - 1
      E[i][j] -= Q[i][j]  
Теперь приведем матрицу  к единичной методом Гаусса - Жордана, применяя те же преобразования к матрице .
for i = 0 to nonabs - 1 if E[i][i] 1 mul = E[i][i] for j = 0 to nonabs - 1 E[i][j] /= mul N[i][j] /= mul for row = 0 to nonabs - 1 if i row mul = E[row][i] for j = 0 to nonabs - 1 E[row][j] -= mul * E[i][j] N[row][j] -= mul * N[i][j]
В результате   т.е.  - фундаментальная матрица Марковской цепи. Найдем матрицу .
for i = 0 to nonabs - 1
   for j = 0 to abs - 1
      G[i][j] = 0
      for k = 0 to nonabs - 1
         G[i][j] += N[i][k] * R[k][j]
Выведем ответ: в -ой строке вероятность поглощения в -ом состоянии. Естественно, для несущественного состояния это , в ином случае  где  - номер соответствующий -ому состоянию в матрице  (т.е. под которым оно располагалось в матрице  т.е. значение ). Прибавлять 1 нужно т.к. вероятность поглотиться в -ом поглощающем состоянии, оказавшись изначально в нем же равна 1.
for i = 0 to n - 1
   prob = 0
   if absorbing[i]
      for j = 0 to nonabs - 1
         prob += G[j][position[i]]
      prob++
      prob /= n
   println(prob)
Литература
- Википедия - Цепи Маркова
- Кемени Дж., Снелл Дж. "Конечные цепи Маркова".
