Решение рекуррентных соотношений — различия между версиями
(→Метод производящих функций) |
(→Определения) |
||
| Строка 2: | Строка 2: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
| − | '''Рекуррентная формула''' (англ. ''recurrence relation'') — формула вида <tex>a_n=f(n, a_{n-1}, a_{n-2}, \dots, a_{n-p} ) </tex>, выражающая каждый следующий член последовательности <tex>a_n</tex> через <tex>p</tex> предыдущих членов и номер члена последовательности <tex>n</tex>. | + | '''Рекуррентная формула''' (англ. ''recurrence relation'') — формула вида <tex>a_n=f(n, a_{n-1}, a_{n-2}, \dots, a_{n-p} ) </tex>, выражающая каждый следующий член последовательности <tex>a_n</tex> через <tex>p</tex> предыдущих членов и номер члена последовательности <tex>n</tex>, вместе с заданными первыми p членами. |
}} | }} | ||
Пусть последовательность <tex>(a_0, a_1, a_2, … )</tex> удовлетворяет некоторому рекуррентному соотношению. Часто мы хотим получить выражение для <tex>a_n</tex> (при <tex>n\geqslant 0</tex>) в замкнутой форме (в виде конечного количества математических объектов), то есть решить рекуррентное соотношение. Например, для рекурсивной функции, описывающей сумму чисел натурального ряда: | Пусть последовательность <tex>(a_0, a_1, a_2, … )</tex> удовлетворяет некоторому рекуррентному соотношению. Часто мы хотим получить выражение для <tex>a_n</tex> (при <tex>n\geqslant 0</tex>) в замкнутой форме (в виде конечного количества математических объектов), то есть решить рекуррентное соотношение. Например, для рекурсивной функции, описывающей сумму чисел натурального ряда: | ||
Версия 13:17, 29 марта 2018
Содержание
Определения
| Определение: |
| Рекуррентная формула (англ. recurrence relation) — формула вида , выражающая каждый следующий член последовательности через предыдущих членов и номер члена последовательности , вместе с заданными первыми p членами. |
Пусть последовательность удовлетворяет некоторому рекуррентному соотношению. Часто мы хотим получить выражение для (при ) в замкнутой форме (в виде конечного количества математических объектов), то есть решить рекуррентное соотношение. Например, для рекурсивной функции, описывающей сумму чисел натурального ряда:
член может быть записан следующим образом:
Для этого можно использовать метод производящих функций (англ. generating Function Method).
Метод производящих функций
Алгоритм получения выражения для чисел , удовлетворяющих рекуррентному соотношению, с помощью производящих функций cостоит из шагов.
- Записать рекуррентное соотношение и начальные данные для него в следующем виде (если порядок соотношения равен ):
- Домножить каждую строчку на в соответствующей степени () и просуммировать по всем . В левой части получится сумма , которая равна производящей функции . Правую часть преобразовать так, чтобы она превратилась в выражение, включающее .
- Решить полученное уравнение, получив для выражение в замкнутом виде.
- Разложить в степенной ряд, коэффициент при будет искомым выражением для .
Примеры
1 пример
Производящие функции позволяют решать рекуррентные соотношение механически по одному и тому же алгоритму. Рассмотрим общую схему на простом примере, который позволит продемонстрировать базовые приёмы работы.
Задано линейное однородное рекуррентное соотношение порядка с постоянными коэффициентами:
Порядок соотношения — это его «глубина», то есть количество предшествующих элементов, требуемых для вычисления элемента с номером . В данном случае порядок равен , так как для вычисления требуется знать и .
Будем искать производящую функцию последовательности в виде
с этой целью умножим верхнюю строчку в записи рекуррентного соотношения на , следующую — на и последнюю — на :
Теперь сложим все уравнения для всех значений :
Левая часть уравнения в точности равна , а в правой части есть суммы, очень похожие на функцию , но не равные ей. Эти суммы нужно привести к виду . Начнём с первой:
Равенство получатся вынесением в первой степени за знак суммы, это необходимо, чтобы уровнять степень переменной и индекс переменной a внутри суммы. Действие — изменение индекса суммирования, которое позволяет избавиться от . Равенство получается, если прибавить и снова отнять значение , чтобы получить полную сумму от до . Равенство справедливо в силу того, что .
Аналогичные манипуляции со второй суммой дают нам выражение
Теперь наше исходное уравнение для производящей функции принимает вид:
откуда получаем производящую функцию последовательности в замкнутом виде —
Отыскав производящую функцию в замкнутом виде, её нужно снова разложить в ряд. Это можно сделать разными способами, но самый простой из них — разбить всю дробь на простые дроби и применить формулу для разложения . Итак, разложим знаменатель функции на множители:
Теперь разобьём дробь на сумму простых дробей:
Вспомним разложение для простейшей рациональной функции:
Из этого разложения следует, что
Таким образом,
С другой стороны, мы искали в виде
поэтому, в силу равенства рядов, (для ).
2 пример: числа Фибоначчи
Рассмотрим рекуррентное соотношение для чисел Фибоначчи:
Первый шаг алгоритма мы уже выполнили, записав рекуррентное соотношение. Выполним второй шаг:
Складываем все строчки:
Третий шаг алгоритма требует привести все суммы к замкнутому виду:
откуда получаем замкнутое выражение для производящей функции:
Осталось разложить её в ряд (чего требует четвёртый шаг алгоритма). С этой целью нужно разложить знаменатель на множители. Найдем корни уравнения:
Таким образом,
Нам известно разложение следующей рациональной функции:
Рассмотрим первую дробь и поделим в ней числитель и знаменатель на :
Аналогично (но с делением на ) поступим со второй дробью:
Таким образом,
и, следовательно,
Данное выражение можно упростить, если обратить внимание на то, что , и :
3 пример
Рассмотрим следующее рекуррентное соотношение:
Следующие действия аналогичны тем, которые мы делали для чисел Фибоначчи:
Вспомним, что
поэтому
Последняя сумма может быть свёрнута:
Подставив свёрнутое выражение обратно, имеем,
Таким образом, наше последнее уравнение примет вид
Это уравнение для производящей функции. Из него выражаем :
Разложим знаменатель на множители и разобьём дробь на сумму простых дробей:
Дальше мы знаем что делать со всеми этими дробями, кроме, разве лишь, первой. Рассмотрим её (без множителя) подробнее:
Теперь соберём ответ:
Значит,