Изменения

Перейти к: навигация, поиск

Марковская цепь

49 байт добавлено, 19:11, 3 апреля 2018
Эргодическая цепь
{{Лемма
|statement=
Для <tex> i </tex> и <tex> j </tex>, принадлежащих одному классу эквивалентностипо отношению достижимости, <tex> d_i = d_j = d </tex> и числа из множества <tex> N_{i, j} </tex> сравнимы между собой по модулю <tex> d </tex>.
|proof=
Пусть <tex> a \in N_{i, j}, \ b \in N_{i, j}, \ c \in N_{j, i} </tex>. Из <tex> i </tex> можно попасть в <tex> j </tex> и обратно, значит, <tex> a + c \in N_{i, i} </tex>. Также после попадания в <tex> j </tex> можно сколько угодно раз перейти из него в самого себя, и только потом перейти в <tex> i </tex>, для этого понадобится <tex> a + k \cdot d_j + c </tex> шагов при любом достаточно большом <tex> k </tex>. Значит, <tex> d_j </tex> должно делиться на <tex> d_i </tex>. Но аналогично можно доказать, что <tex> d_i </tex> делится на <tex> d_j </tex>, поэтому <tex> d_i = d_j = d </tex>. Также можно перейти за <tex> b </tex> шагов в <tex> j </tex>, а потом попасть в <tex> i </tex>, поэтому <tex> b + c \in N_{i, i} </tex>. Значит, <tex> a + c </tex> и <tex> b + c </tex> оба делятся на <tex> d </tex>, то есть <tex> a </tex> и <tex> b </tex> сравнимы между собой по модулю <tex> d </tex>.
200
правок

Навигация