Асимптотика гипергеометрических последовательностей — различия между версиями
Iksiygrik (обсуждение | вклад) м |
Iksiygrik (обсуждение | вклад) м |
||
Строка 15: | Строка 15: | ||
Для доказательства существования предела применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна<ref>[https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C Фундаментальная последовательность]</ref>. Фундаментальность последовательности означает, что для любого <tex>ε > 0</tex> существует такой номер <tex>N</tex>, что для всех <tex>n > N</tex> и всех положительных <tex>m</tex> | Для доказательства существования предела применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна<ref>[https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C Фундаментальная последовательность]</ref>. Фундаментальность последовательности означает, что для любого <tex>ε > 0</tex> существует такой номер <tex>N</tex>, что для всех <tex>n > N</tex> и всех положительных <tex>m</tex> | ||
− | <tex>|\ln {a_{n+m}} - \ln {a_n} - (n+m)\ln A + n\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n| < ε</tex> | + | <tex>|\ln {a_{n+m}} - \ln {a_n} - (n+m)\ln A + n\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n| < ε</tex> |
или | или | ||
− | <tex>|\ln {a_{n+m}} - \ln {a_n} - m\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n| < ε</tex> | + | <tex>|\ln {a_{n+m}} - \ln {a_n} - m\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n| < ε (*)</tex> |
Перепишем отношение <tex>\frac{a_{n+1}}{a_n}</tex> в виде | Перепишем отношение <tex>\frac{a_{n+1}}{a_n}</tex> в виде | ||
Строка 39: | Строка 39: | ||
<tex>\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2+...</tex> | <tex>\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2+...</tex> | ||
− | Поэтому для некоторой постоянной <tex>C</tex> при достаточно маленьком <tex>x</tex> имеем <tex>|\ln f(x) = (\alpha_1 - \beta_1)x|<Cx^2</tex>. В частности, если N достаточно велико, то <tex>∀ n>N</tex> | + | Поэтому для некоторой постоянной <tex>C</tex> при достаточно маленьком <tex>x</tex> имеем <tex>|\ln f(x) = (\alpha_1 - \beta_1)x|<Cx^2</tex>. В частности, если <tex>N</tex> достаточно велико, то <tex>∀ n>N</tex> |
<tex>|\ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n}|<C \frac{1}{n^2}</tex>, | <tex>|\ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n}|<C \frac{1}{n^2}</tex>, | ||
Строка 45: | Строка 45: | ||
<tex>|\ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}|<C \frac{1}{(n+1)^2}</tex>, | <tex>|\ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}|<C \frac{1}{(n+1)^2}</tex>, | ||
− | <tex> | + | <tex>\cdots</tex> |
<tex>|\ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}|<C \frac{1}{(n+m)^2}</tex>. | <tex>|\ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}|<C \frac{1}{(n+m)^2}</tex>. | ||
− | Теперь интересующее нас выражение в левой части неравенства ( | + | Теперь интересующее нас выражение в левой части неравенства (*) можно оценить с помощью системы и неравенства треугольника<ref>[https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0 Неравенство треугольника]</ref>: |
<tex>| \ln a_{n+m} - \ln a_n - m \ln A - (\alpha_1 - \beta_1)( \ln {n+m} - \ln n)| =</tex> | <tex>| \ln a_{n+m} - \ln a_n - m \ln A - (\alpha_1 - \beta_1)( \ln {n+m} - \ln n)| =</tex> |
Версия 22:20, 16 мая 2018
Определение: |
Пусть у нас есть последовательность, отношение соседних членов которой равно отношению двух многочленов одинаковой степени. Если же степени многочленов больше нуля, то соответствующую последовательность называют гипергеометрической. |
Вычисление асимптотики
Лемма: |
Пусть последовательность положительных чисел такова, что для всех достаточно больших , причем . Тогда растет как для некоторой постоянной . |
Доказательство: |
Утверждение леммы эквивалентно тому, что существует предел Для доказательства существования предела применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна[1]. Фундаментальность последовательности означает, что для любого существует такой номер , что для всех и всех положительных
или
Перепишем отношение в виде, где
Прологарифмировав отношение , получаем. Посмотрим на функцию . Выпишем начальные члены разложения функции в ряд в точке :для некоторой константы . Это разложение - самый существенный элемент доказательства. Именно коэффициент (отличный от нуля по предположению леммы) при линейном члене указывает на присутствие сомножителя в асимптотике. Для логарифма функции имеем
Поэтому для некоторой постоянной при достаточно маленьком имеем . В частности, если достаточно велико, то, ,
. Теперь интересующее нас выражение в левой части неравенства (*) можно оценить с помощью системы и неравенства треугольника[2]:
. Поскольку ряд сходится, первое слагаемое в правой части последнего неравенства при больших можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции на отрезке ,
|
Замечание: Предположения леммы не позволяют определить величину константы c. Действительно, умножив последовательность
на произвольную постоянную , мы получим новую последовательность с тем же отношением последовательных членов, константа для которой увеличивается в разПримеры
Пример. Для чисел Каталана имеем
Поэтому
для некоторой постоянной .Пример. Найдем асимптотику коэффициентов для функции
, где вещественно. В ряде случаев эта асимптотика нам уже известна, например, при . Согласно определению функции имеем.
Если
— целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при
Поэтому чисел Каталана.
. Например, коэффициенты функции ведут себя как , и мы получаем повторный вывод ассимптотики для