Системы счисления — различия между версиями
Senya (обсуждение | вклад) (→Запись числа в b-ичной системе счисления) (Метки: правка с мобильного устройства, правка из мобильной версии) |
Senya (обсуждение | вклад) (→Теорема Цекендорфа (англ. Zeckendorf's theorem)) (Метки: правка с мобильного устройства, правка из мобильной версии) |
||
| Строка 52: | Строка 52: | ||
Таким образом, любое неотрицательное целое число <tex>a = 0,\ 1,\ 2,\ldots </tex> можно единственным образом представить через последовательность битов …ε<sub>k</sub>…ε<sub>4</sub>ε<sub>3</sub>ε<sub>2</sub>: <tex>a = \sum_k \varepsilon_k F_k,\ \varepsilon_k\in\{0,1\}</tex>, причём последовательность {ε<sub>k</sub>} содержит лишь конечное число единиц, и не имеет пар соседних единиц: <tex>\forall k \geqslant 2: (\varepsilon_k=1) \Rightarrow (\varepsilon_{k+1}=0)</tex>. | Таким образом, любое неотрицательное целое число <tex>a = 0,\ 1,\ 2,\ldots </tex> можно единственным образом представить через последовательность битов …ε<sub>k</sub>…ε<sub>4</sub>ε<sub>3</sub>ε<sub>2</sub>: <tex>a = \sum_k \varepsilon_k F_k,\ \varepsilon_k\in\{0,1\}</tex>, причём последовательность {ε<sub>k</sub>} содержит лишь конечное число единиц, и не имеет пар соседних единиц: <tex>\forall k \geqslant 2: (\varepsilon_k=1) \Rightarrow (\varepsilon_{k+1}=0)</tex>. | ||
За исключением последнего свойства, данное представление аналогично двоичной системе счисления. | За исключением последнего свойства, данное представление аналогично двоичной системе счисления. | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
== См. также == | == См. также == | ||
Версия 16:42, 17 мая 2018
| Определение: |
| Систе́ма счисле́ния (англ. numeral system или system of numeration) — символический метод записи чисел, представление чисел с помощью письменных знаков. |
Содержание
Позиционные системы счисления
В позиционных системах счисления (англ. positional numeral systems) один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен.
Под позиционной системой счисления обычно понимается b-ичная система счисления, которая определяется целым числом , называемым основанием системы счисления.
Запись числа в b-ичной системе счисления
Целое число x в b-ичной системе счисления представляется в виде конечной линейной комбинации степеней числа b:
- , где — это целые числа, называемые цифрами, удовлетворяющие неравенству .
Каждая степень в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя (номером разряда). Обычно для ненулевого числа требуют, чтобы старшая цифра в b-ичном представлении была также ненулевой.
Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его b-ичных цифр, перечисляемых по убыванию старшинства разрядов слева направо:
Например, число сто три представляется в десятичной системе счисления в виде:
Наиболее употребляемыми в настоящее время позиционными системами являются:
- — единичная (как позиционная может и не рассматриваться; счёт на пальцах, зарубки, узелки «на память» и др.);
- — двоичная (в дискретной математике, информатике, программировании);
- — восьмеричная;
- — десятичная (используется повсеместно);
- — двенадцатеричная (счёт дюжинами);
- — шестнадцатеричная (используется в программировании, информатике).
Смешанные системы счисления
Смешанная система счисления (англ. mixed radix numeral systems) является обобщением -ичной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел и каждое число представляется как линейная комбинация:
- , где на коэффициенты (называемые как и прежде цифрами) накладываются некоторые ограничения.
Записью числа в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса , начиная с первого ненулевого.
В зависимости от вида как функции от смешанные системы счисления могут быть степенными, показательными и т. п. Когда для некоторого , показательная смешанная система счисления совпадает с -ичной системой счисления.
Наиболее известным примером смешанной системы счисления являются представление времени в виде количества суток, часов, минут и секунд. При этом величина дней, часов, минут, секунд соответствует значению секунд.
Фибоначчиева система счисления
| Определение: |
| Последовательность чисел Фибоначчи задается линейным рекуррентным соотношением:
|
Фибоначчиева система счисления основывается на числах Фибоначчи.
- , где — числа Фибоначчи, , при этом в записи не встречается две единицы подряд.
Таким образом, любое неотрицательное целое число можно единственным образом представить через последовательность битов …εk…ε4ε3ε2: , причём последовательность {εk} содержит лишь конечное число единиц, и не имеет пар соседних единиц: . За исключением последнего свойства, данное представление аналогично двоичной системе счисления.
См. также
- Арифметика чисел в b-ичной системе счисления (Длинная арифметика)
- Разложение на множители (факторизация)