Изменения

Перейти к: навигация, поиск
м
Нет описания правки
|id=lemma1.
|statement=
Пусть последовательность <tex>a_0, a_1, \cdotsldots</tex> положительных чисел такова, что <tex>\frac{a_{n+1}}{a_n}=A\frac{n^k+\alpha_1 n^{k-1}+ \cdots ldots +\alpha_k}{n^k+\beta_1 n^{k-1}+ \cdots ldots +\beta_k}</tex> для всех достаточно больших <tex>n</tex>, причем <tex>\alpha_1 \ne \beta_1</tex>. Тогда <tex>a_n</tex> растет как <tex>a_n \sim cA^n n^{\alpha_1-\beta_1}</tex> для некоторой постоянной <tex>c>0</tex>.
|proof=
Утверждение леммы эквивалентно тому, что существует предел <tex>\lim_{n \to \infty} {\frac{a_n}{A^n n^{\alpha_1-\beta_1}}}</tex>. <br> Прологарифмировав, мы приходим к необходимости доказать существование предела <tex>\lim_{n \to \infty} { \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n }</tex>.
Перепишем отношение <tex>\frac{a_{n+1}}{a_n}</tex> в виде
<tex>\frac{a_{n+1}}{a_n}=A\frac{1+\alpha_1 n^{-1} + \cdots ldots + \alpha_k n^{-k}}{1+\beta_1 n^{-1} + \cdots ldots + \beta_k n^{-k}}=Af(\frac{1}{n})</tex>,
где
<tex>f(x)=\frac{1+\alpha_1 x + \cdots ldots + \alpha_k x^k}{1+\beta_1 x + \cdots ldots + \beta_k x^k}</tex>
Прологарифмировав отношение <tex>\frac{a_{n+1}}{a_n}</tex>, получаем
Посмотрим на функцию <tex>\ln f(x)</tex>. Выпишем начальные члены разложения функции <tex>f</tex> в ряд в точке <tex>0</tex>:
<tex>f(x)=1 + (\alpha_1 - \beta_1)x + \gamma x^2 + \cdotsldots</tex> для некоторой константы <tex>\gamma</tex>. Это разложение - самый существенный элемент доказательства. Именно коэффициент <tex>\alpha_1 - \beta_1</tex>(отличный от нуля по предположению леммы) при линейном члене указывает на присутствие сомножителя <tex>n^{\alpha_1-\beta_1}</tex> в асимптотике. Для логарифма функции <tex>f</tex> имеем
<tex>\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2 + \cdotsldots</tex>
Поэтому для некоторой постоянной <tex>C</tex> при достаточно маленьком <tex>x</tex> имеем <tex>|\ln f(x) = (\alpha_1 - \beta_1)x|<Cx^2</tex>. В частности, если <tex>N</tex> достаточно велико, то <tex>&forall; n>N</tex>
<tex>|\ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}|<C \frac{1}{(n+1)^2}</tex>,
<tex>\cdotsldots</tex>
<tex>|\ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}|<C \frac{1}{(n+m)^2}</tex>.
<tex>| \ln a_{n+m} - \ln a_n - m \ln A - (\alpha_1 - \beta_1)( \ln {(n+m)} - \ln n)| =</tex>
<tex>= | \ln a_{n+m} - \ln a_{n + m - 1} + \ln a_{n + m - 1} - \cdots ldots + \ln a_{n + 1} - \ln a_n - m \ln A - </tex>
<tex> - (\alpha_1 - \beta_1) \sum_{k=0}^{m-1} \frac{1}{n+k} + (\alpha_1 - \beta_1) \sum_{k=0}^{m-1} \frac{1}{n+k} - (\alpha_1 - \beta_1)(\ln {(n+m)} - \ln n)| \le</tex>
<tex>\le | \ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n} | + | \ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}| +</tex>
<tex>\cdotsldots</tex>
<tex>+ | \ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}| + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {(n+m)} + \ln n | \le</tex>
<tex>\le C(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \cdots ldots + \frac{1}{(n+m-1)^2}) + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {(n+m)} + \ln n |</tex>.
Поскольку ряд <tex>\sum_{k=1}^{\infty} \frac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших <tex>n</tex> можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\frac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>,
уже известна, например, при <tex>\alpha=−1</tex>. Согласно определению функции <tex>(1-s)^{\alpha}</tex> имеем
<tex>(a-s)^{\alpha}=a^{\alpha}(1-\frac{s}{a})^{\alpha}=a^{\alpha}(1 - \frac{\alpha}{1!} \frac{s}{a} + \frac{\alpha(\alpha-1)}{2!}{(\frac{s}{a})^2} - \frac{\alpha(\alpha-1)(\alpha-2)}{3!}(\frac{s}{a})^3 + \cdotsldots)</tex>.
Если <tex>\alpha</tex> — целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при <tex>a_n=(-1)^n \frac{\alpha(\alpha-1) \cdots ldots (\alpha-n+1)}{n!{\alpha}^n}</tex>
<tex>\frac{a_{n+1}}{a_n}=\frac{1}{a} \frac{n-\alpha}{n+1}</tex>
74
правки

Навигация