Примеры неразрешимых задач: задача о выводе в полусистеме Туэ — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 7: Строка 7:
 
<tex>\gamma \vDash \delta</tex> по <tex>R_i</tex> , если слово <tex>\delta</tex> получается путем подстановки <tex>\beta_i</tex> вместо какого-то вхождения <tex>\alpha_i</tex> в <tex>\gamma</tex>.
 
<tex>\gamma \vDash \delta</tex> по <tex>R_i</tex> , если слово <tex>\delta</tex> получается путем подстановки <tex>\beta_i</tex> вместо какого-то вхождения <tex>\alpha_i</tex> в <tex>\gamma</tex>.
  
Вывод <tex>\beta</tex> из <tex>\alpha</tex> — цепочка <tex>\alpha\vDash\epsilon_1\vDash\epsilon_2\vDash .. \vdash\beta</tex>, где каждое <tex>\epsilon_j</tex> получается из <tex>\epsilon_{j-1}</tex> некоторой подстановкой.
+
Вывод <tex>\beta</tex> из <tex>\alpha</tex> — цепочка <tex>\alpha\vDash\epsilon_1\vDash\epsilon_2\vDash \ldots \vdash\beta</tex>, где каждое <tex>\epsilon_j</tex> получается из <tex>\epsilon_{j-1}</tex> некоторой подстановкой.
  
 
{{Теорема
 
{{Теорема

Версия 00:34, 3 июня 2018

Определение:
Полусистема Туэ (ассоциативное исчисление) (англ. semi-Thue system) — это формальная система, определяемая алфавитом [math]A[/math] и конечным множеством подстановок вида [math]\alpha_i\rightarrow \beta_i[/math], где [math]\alpha_i, \beta_i[/math] — слова из [math]A[/math].


Подстановка [math]\alpha_i\rightarrow \beta_i[/math] интерпретируется как правило вывода [math]R_i[/math] следующим образом: [math]\gamma \vDash \delta[/math] по [math]R_i[/math] , если слово [math]\delta[/math] получается путем подстановки [math]\beta_i[/math] вместо какого-то вхождения [math]\alpha_i[/math] в [math]\gamma[/math].

Вывод [math]\beta[/math] из [math]\alpha[/math] — цепочка [math]\alpha\vDash\epsilon_1\vDash\epsilon_2\vDash \ldots \vdash\beta[/math], где каждое [math]\epsilon_j[/math] получается из [math]\epsilon_{j-1}[/math] некоторой подстановкой.

Теорема:
В полусистеме Туэ задача вывода из слова [math]\alpha [/math] слово [math] \beta[/math] (англ. word problem for semi-Thue systems) неразрешима.
Доказательство:
[math]\triangleright[/math]

Сведем неразрешимую задачу проблемы останова[1] к нашей. Для этого построим по структуре данной из проблемы останова МТ полусистему Туэ. Пусть [math] q_1 [/math] — стартовое состояние, [math] q_n [/math] — допускающее состояние МТ. Для построение искомой полусистемы будем описывать текущее состояние МТ с помощью строки [math] \langle xqy\rangle [/math] , где [math] q [/math] — текущее состояние автомата, [math] xy [/math] — строка, записанная на ленте, [math] \langle[/math] и [math]\rangle [/math] — маркера начала и конца строки соответственно. Пусть [math] s [/math] — последний символ строки [math] x [/math], а [math] t [/math] — первый символ строки [math] y [/math]. При этом головка указывает на символ [math] t [/math]. Тогда текущий шаг МТ можно описать с помощью следующих преобразований строк:

[math] sqt \rightarrow \begin{cases} q'st' & \text{if } \leftarrow \\ sq't' & \text{if } \downarrow \\ st'q' & \text{if } \rightarrow \end{cases} [/math]

В силу конечности множеств состояний автомата ([math] Q [/math]) и алфавита ([math] T [/math]) добавим все подобные правила (представленные выше) в нашу полусистему. Заметим, что в МТ лента у нас бесконечна. Поэтому добавим в нашу систему следующие правила, которые будут эмулировать расширение слова на ленте за счет сдвига маркеров (прим. B — пустой символ ленты) :

[math]q \rangle \rightarrow qB \rangle [/math] и [math]\langle q \rightarrow \langle Bq [/math] для [math] \forall q \in Q \setminus \{q_n\}[/math]

И наконец добавим в наш набор те правила, которые позволят нам из конфигурации, в которой присутствует допускающее состояние [math] q_n [/math], получить уникальное слово. Это необходимо, чтобы мы смогли построить критерий в терминах полуситсемы Туэ того, что из стартовой конфигураций наша программа корректно завершается. При этом пусть это уникальное состоит лишь из символа допускающего состояния [math] q_n [/math]. Таким образом, имеем следующие правила:

[math]q_n c \rightarrow q_n [/math] и [math]c q_n \rightarrow q_n [/math] для [math] \forall c \in T \cup Q \cup \{B, \langle, \rangle \} [/math]

Имея этот набор правил можем составить упомянутый выше критерий: программа корректно завершиться на данном на ленте входном слове [math] u [/math], если в построенной полусистеме [math] \langle q_1u \rangle \vDash ^* q_n [/math]. Таким образом из разрешимости этой задачи следовала бы разрешимость задачи останова. Соответсвенно задача о выводе в полусистеме Туэ алгоритмически неразрешима.
[math]\triangleleft[/math]

См. также

Примечания

  1. Пример использования теоремы о рекурсии

Источники информации