Асимптотика коэффициентов функций, связанных между собой уравнением Лагранжа — различия между версиями
Senya (обсуждение | вклад) |
Senya (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | Пусть две производящие функции <tex>\varphi = \varphi(s)</tex> и <tex>\psi = \psi(t)\,</tex> связаны между собой уравнением Лагранжа <tex>\varphi(s) = s\psi(\varphi(s))</tex>. Мы хотим выяснить, как связаны между собой их радиусы сходимости. | + | Пусть две производящие функции <tex>\varphi = \varphi(s)</tex> и <tex>\psi = \psi(t)\,</tex> связаны между собой уравнением Лагранжа <tex>\varphi(s) = s \cdot \psi \cdot (\varphi(s))</tex>. Мы хотим выяснить, как связаны между собой их радиусы сходимости. |
{{Теорема | {{Теорема |
Версия 12:17, 24 июня 2018
Пусть две производящие функции
и связаны между собой уравнением Лагранжа . Мы хотим выяснить, как связаны между собой их радиусы сходимости.Теорема: |
Пусть две производящие функции и с неотрицательными коэффицентами связаны между собой уравнением Лагранжа . Пусть — радиус сходимости ряда причем числовой ряд сходится. Тогда радиус сходимости ряда не меньше . Если числовой ряд также сходится, то радиус сходимости ряда равен .
Замечание Требование неотрицательности коэффициентов рядов естественно, если мы рассматриваем производящие функции для языков. В этом случае естественно также ожидать, что радиус сходимости производящего ряда для числа неприводимых слов больше радиуса сходимости производящего ряда для числа всех слов в языке (последняя последовательность растет быстрее последовательности чисел неприводимых слов). |
Доказательство: |
Докажем, что ряд сходится абсолютно в любой точке . Поскольку функция монотонна и непрерывна на отрезке существует точка , такая, что . Поэтому для любой частичной суммы ряда где последнее неравенство следует из предыдущего замечания. Первое утверждение теоремы доказано. Перепишем теперь утверждение Лагранжа в виде Функции и определены и голоморфны внутри круга радиуса . Теорема будет доказана, если мы покажем, что функцию нельзя продолжить голоморфно ни в какую окрестность точки . Предположим, что такое продолжение существует. ТогдаПоэтому функция Последний предел существует и, по условию теоремы, положителен. обратима в окрестности точки что, в свою очередь, противоречит условиям теоремы. |
Отметим, что производящий ряд для чисел Каталана
сходится при так как числа Каталана имеют асимптотику а ряд сходится. С другой стороны, коэффиценты производной имеют асимптотику и поэтому ряд расходится. В результате теорема в полном объеме к функции Каталана неприменима, а второе утверждение оказывается неверным.