Изменения

Перейти к: навигация, поиск

Проблема четырёх красок

4 байта убрано, 21:33, 11 ноября 2018
Общие идеи доказательства
Вернемся к доказательству нашей теоремы. Будем пытаться доказать от противного. Пусть у нас существует граф, который требует хотя бы <tex>5</tex> цветов для раскраски. Среди всех таких графов существует минимальный, то есть такой, что удаление любой вершины из него делает его <tex>4</tex>-раскрашиваемым. Тогда в таком графе не может быть вершины степени <tex> \leqslant 3</tex>, так как иначе мы может просто удалить ее из графа, раскрасить полученный граф в <tex>4</tex> цвета, вернуть удаленную вершину и покрасить ее в один из цветов, не занятых соседями. Аналогично [[Хроматическое_число_планарного_графа#Раскраска_в_5_цветов|теореме Хивуда]] доказывается, что удалив вершину степени <tex>4</tex> также всегда можно раскрасить граф в <tex>4</tex> цвета. Следовательно, и таких вершин в искомом графе нет. Для вершины степени <tex>5</tex> Кемпе попытался доказать аналогичное утверждение, но это утверждение и было опровергнуто Хивудом.
На этом этапе мы и натыкаемся на самую сложную часть доказательства. Имея дело со случаем вершины степени <tex>5</tex>, требуются более сложные операции, чем удаление вершины. Тогда вместо <tex>1</tex> вершины будем рассматривать связанный подграф из нескольких вершин (назовем его '''конфигурацией'''). Тогда для некоторых случаев, как и прежде, достаточно продемонстрировать, что если при удалении конфигурации граф <tex>4</tex>-раскрашиваемый, то окраска может быть изменена таким образом, что при возвращении конфигурации граф также можно раскрасить в <tex>4</tex> цвета. Конфигурации для которых это возможно назовем '''сводимыми'''. Например, конфигурация состоящая из <tex>1</tex> вершины степени <tex>\leqslant 4</tex> является сводимой (было доказано выше). '''НеизбежнымиНеизбежной''' конфигурациями конфигурацией назовем такие такое '''множествамножество''' конфигураций, что хотя бы одна из конфигураций этого множества обязана быть в нашем графе.
Если нам удастся найти набор неизбежных конфигураций и доказать, что с ними граф все равно <tex>4</tex>-раскрашиваем, доказательство будет завершено. Основным методом, используемым, чтобы обнаружить такой набор, является [https://en.wikipedia.org/wiki/Discharging_method_(discrete_mathematics) метод разрядки]
286
правок

Навигация