Изменения

Перейти к: навигация, поиск

Теория Рамсея

221 байт убрано, 21:30, 28 ноября 2018
Оценки снизу
Предположим, что <tex>r(k,k)=n<2^{k/2}</tex> и разобьём все графы на n вершинах на пары <tex>G, \overline G</tex> (граф и его дополнение) Так как <tex>g(n,k)<\frac12</tex>, то существует пара, в которой ни <tex>G</tex>, ни <tex>\overline G</tex> не содержат клики на <tex>k</tex> вершинах. Рассмотрим раскраску рёбер <tex>K_n</tex> в два цвета, в которой ребра цвета 1 образуют граф <tex>G</tex>. В такой раскраске нет клики на <tex>k</tex> вершинах ни цвета 1, ни цвета 2, противоречие. Следовательно <tex>r(k,k) \ge 2^{k/2}</tex>.
}}
{{Утверждение|id=u2|about=2|statement=Для любых <tex>k,m \in \mathbb N</tex> таких, что <tex>2 \le k \le m</tex>, выполняется неравенство <tex>r(k,m) \ge 2^{k/2}</tex>}}
===Значения чисел Рамсея===
<center>
442
правки

Навигация