Изменения

Перейти к: навигация, поиск

Теория Рамсея

31 байт добавлено, 20:56, 29 ноября 2018
м
Теорема Рамсея. Оценки сверху
<tex>1)</tex> Докажем с помощью метода математической индукции по <tex>n+m</tex>.
'''База:''' <tex>r(n,\;1) = r(1,\;n) = 1</tex>, так как 1-вершинный граф , состоящий из одной вершины, можно считать полным графом любого цвета.
'''Индукционный переход:''' Пусть <tex>n>1</tex> и <tex>m>1</tex>. Рассмотрим полный чёрно-белый граф из <tex>r(n-1,\;m)+r(n,\;m-1)</tex> вершин. Возьмём произвольную вершину <tex>v</tex> и обозначим через <tex>M</tex> и <tex>N</tex> множества инцидентные <tex>v</tex> в чёрном и белом подграфе соответственно. Так как в графе <tex>r(n-1,\;m)+r(n,\;m-1)=|M|+|N|+1 </tex> вершин, согласно принципу Дирихле, либо <tex>|M|\geqslant r(n-1,\;m)</tex>, либо <tex>|N|\geqslant r(n,\;m-1)</tex>. Пусть <tex>|M|\geqslant r(n-1,\;m)</tex>. Тогда либо в <tex>M</tex> существует белый <tex>K_m</tex>, что доказывает теорему, либо в <tex>M</tex> есть чёрный <tex>K_{n-1}</tex>, который вместе с <tex>v</tex> образует чёрный <tex>K_n</tex>, в этом случае теорема также доказана. Случай <tex>|N|\geqslant r(n,\;m-1)</tex> рассматривается аналогично.
442
правки

Навигация