Отношение вершинной двусвязности — различия между версиями
м |
(→Точки сочленения) |
||
Строка 30: | Строка 30: | ||
}} | }} | ||
− | == | + | ==Точки сочленения== |
+ | {{main|Точка сочленения, эквивалентные определения}} | ||
{{Определение | {{Определение | ||
|definition= | |definition= |
Версия 07:58, 15 января 2011
Эта статья находится в разработке!
Вершинная двусвязность
Определение: |
Два ребра графа называются вершинно двусвязными, если существует два вершинно непересекающихся пути, попарно соединяющие их концы. |
Теорема: |
Отношение вершинной двусвязности является отношением эквивалентности на ребрах. |
Доказательство: |
Рефлексивность: В данном случае имеем 2 пустых пути, которые, очевидно, не пересекаются. Коммутативность: Следует из симметричности определения. Транзитивность: (пока не написано) |
Замечание. Рассмотрим следующее определение: вершины
и называются вершинно двусвязными, если между ними существуют 2 пути, не пересекающихся по вершинам, за исключением концов. Это определение не может претендовать на корректность, так как в этом случае отношение вершинной двусвязности перестанет быть транзитивным.Блоки
Определение: |
Блоками, или компонентами вершинной двусвязности графа, называют его подграфы, множества ребер которых - классы эквивалентности вершинной двусвязности, а множества вершин - множества концов ребер из соответствующих классов. |
Точки сочленения
Определение: |
Точка сочленения графа | - вершина, принадлежащая как минимум двум блокам .
Определение: |
Точка сочленения графа | - вершина, при удалении которой в увеличивается число компонент связности.