Мультиплексор и демультиплексор — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Логическая схема демультиплексора)
Строка 3: Строка 3:
  
 
{{Определение
 
{{Определение
|definition='''Мультиплексор''' (англ. ''multiplexer'', или ''mux'') - логический элемент, имеющий $2^n + n$ входов $x_0$, $x_1$, $\ldots$, $x_{2^n-1}$, $s_0$, $s_1$, $\ldots$, $s_{n-1}$ и один выход $z$, на который подаётся значение на входе $x_i$, где $i$ - число, которое кодируется входами $s_0$, $s_1$, $\ldots$, $s_{n-1}$.
+
|definition='''Мультиплексор''' (англ. ''multiplexer'', или ''mux'') - логический элемент, имеющий <tex>2^n + n</tex> входов <tex>x_0</tex>, <tex>x_1</tex>, <tex>\ldots</tex>, <tex>x_{2^n-1}</tex>, <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{n-1}</tex> и один выход <tex>z</tex>, на который подаётся значение на входе <tex>x_i</tex>, где <tex>i</tex> - число, которое кодируется входами <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{n-1}</tex>.
 
}}
 
}}
  
 
{{Определение
 
{{Определение
|definition='''Демультиплексор''' (англ. ''demultiplexer'', или ''demux'') - логический элемент, имеющий $n+1$ входов $s_0$, $s_1$, $\ldots$, $s_{n-1}$, $x$ и $2^n$ выходов $z_0$, $z_1$, $\ldots$, $z_{2^n-1}$. На все выходы подаётся $0$ кроме выхода $z_i$, на который подаётся значение на входе $y$, где $i$ - число, которое кодируется входами $s_0$, $s_1$, $\ldots$, $s_{n-1}$.
+
|definition='''Демультиплексор''' (англ. ''demultiplexer'', или ''demux'') - логический элемент, имеющий <tex>n+1</tex> входов <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{n-1}</tex>, <tex>x</tex> и <tex>2^n</tex> выходов <tex>z_0</tex>, <tex>z_1</tex>, <tex>\ldots</tex>, <tex>z_{2^n-1}</tex>. На все выходы подаётся <tex>0</tex> кроме выхода <tex>z_i</tex>, на который подаётся значение на входе <tex>y</tex>, где <tex>i</tex> - число, которое кодируется входами <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{n-1}</tex>.
 
}}
 
}}
  
Строка 18: Строка 18:
 
===Мультиплексор 2-to-1===
 
===Мультиплексор 2-to-1===
  
Рассмотрим мультиплексор $2-to-1$ (это значит, что есть всего два входа $x_0$ и $x_1$, значения которых могут подаваться на вход $z$). Переберём всевозможные варианты значений на входах. Если на $s$ подавать $0$, то на выход $z$ будет подаваться то же значение, которое подаётся на вход $x_0$, т.е. в данном случае значение на входе $x_1$ нас не интересует. Аналогично, если на вход $s$ подавать $1$, то на выход $z$ будет подаваться то же значение, которое подаётся на вход $x_1$. Для более лучшего понимания посмотрим на таблицу истинности.
+
Рассмотрим мультиплексор <tex>2-to-1</tex> (это значит, что есть всего два входа <tex>x_0</tex> и <tex>x_1</tex>, значения которых могут подаваться на вход <tex>z</tex>). Переберём всевозможные варианты значений на входах. Если на <tex>s</tex> подавать <tex>0</tex>, то на выход <tex>z</tex> будет подаваться то же значение, которое подаётся на вход <tex>x_0</tex>, т.е. в данном случае значение на входе <tex>x_1</tex> нас не интересует. Аналогично, если на вход <tex>s</tex> подавать <tex>1</tex>, то на выход <tex>z</tex> будет подаваться то же значение, которое подаётся на вход <tex>x_1</tex>. Для более лучшего понимания посмотрим на таблицу истинности.
  
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
! $s$ !! $x_0$ !! $x_1$ !! $z$
+
! <tex>s</tex> !! <tex>x_0</tex> !! <tex>x_1</tex> !! <tex>z</tex>
 
|-
 
|-
 
| '''0''' || '''0''' || ? || '''0'''
 
| '''0''' || '''0''' || ? || '''0'''
Строка 34: Строка 34:
  
 
===Мультиплексор 4-to-1===
 
===Мультиплексор 4-to-1===
Также рассмотрим мультиплексор $4-to-1$ (это значит, что есть четыре входа $x_0$, $x_1$, $x_2$ и $x_3$, значения которых могут подаваться на выход $z$). Также переберём всевозможные варианты значений на входах. Тут уже 2 входа $s_0$ и $s_1$, которые определяют, значение какого из входов $x_0$, $x_1$, $x_2$ или $x_3$ будет подаваться на выход $z$. Если $s_0 = s_1 = 0$, то на выход $z$ будет подаваться значение входа $x_0$, если $s_0 = 1$ и $s_1 = 0$ $-$ то значение $x_1$, если $s_0 = 0$ и $s_1 = 1$ $-$ то значение $x_2$, в противном случае $-$ значение $x_3$. Для более лучшее понимания рекомендуется обратиться к таблице истинности.
+
Также рассмотрим мультиплексор <tex>4-to-1</tex> (это значит, что есть четыре входа <tex>x_0</tex>, <tex>x_1</tex>, <tex>x_2</tex> и <tex>x_3</tex>, значения которых могут подаваться на выход <tex>z</tex>). Также переберём всевозможные варианты значений на входах. Тут уже 2 входа <tex>s_0</tex> и <tex>s_1</tex>, которые определяют, значение какого из входов <tex>x_0</tex>, <tex>x_1</tex>, <tex>x_2</tex> или <tex>x_3</tex> будет подаваться на выход <tex>z</tex>. Если <tex>s_0 = s_1 = 0</tex>, то на выход <tex>z</tex> будет подаваться значение входа <tex>x_0</tex>, если <tex>s_0 = 1</tex> и <tex>s_1 = 0</tex> <tex>-</tex> то значение <tex>x_1</tex>, если <tex>s_0 = 0</tex> и <tex>s_1 = 1</tex> <tex>-</tex> то значение <tex>x_2</tex>, в противном случае <tex>-</tex> значение <tex>x_3</tex>. Для более лучшее понимания рекомендуется обратиться к таблице истинности.
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
! $s_0$ !! $s_1$ !! $x_0$ !! $x_1$ !! $x_2$ !! $x_3$ !! $z$
+
! <tex>s_0</tex> !! <tex>s_1</tex> !! <tex>x_0</tex> !! <tex>x_1</tex> !! <tex>x_2</tex> !! <tex>x_3</tex> !! <tex>z</tex>
 
|-
 
|-
 
| '''0''' || '''0''' || '''0''' || ? || ? || ? || '''0'''
 
| '''0''' || '''0''' || '''0''' || ? || ? || ? || '''0'''
Строка 60: Строка 60:
 
[[Файл:LogicSircuit1to8.png|thumb|180px|Логическая схема мультиплексора 8-to-1]]
 
[[Файл:LogicSircuit1to8.png|thumb|180px|Логическая схема мультиплексора 8-to-1]]
  
Заметим, что [[дешифратор]] имеет $n$ входов и $2^n$ выходов, причём на все выходы дешифратора подаётся $0$ кроме выхода $z_i$, на который подаётся $1$, где $i$ - число, которое кодируется его входами.
+
Заметим, что [[дешифратор]] имеет <tex>n</tex> входов и <tex>2^n</tex> выходов, причём на все выходы дешифратора подаётся <tex>0</tex> кроме выхода <tex>z_i</tex>, на который подаётся <tex>1</tex>, где <tex>i</tex> - число, которое кодируется его входами.
  
Тогда давайте построим дешифратор ${n}-to-{2^n}$ (это значит, что у дешифратора имеется $n$ входов и $2^n$ выходов), на вход ему подадим входы $s_0$, $s_1$, $\ldots$, $s_{n-1}$, а выходы этого дешифратора обозначим как $y_0$, $y_1$, $\ldots$, $y_{2^n-1}$,  а потом с помощью гейта $AND$ соединим выход $y_i$ дешифратора с входом $x_i$ мультиплексора, потом соединим все гейты с выходом $z$. Давайте разберёмся, почему эта схема правильная: очевидно, что если входы $s_0$, $s_1$, $\ldots$ $s_{n-1}$ кодируют вход $i$, то это значит, что только $y_i$ выход дешифратора будет иметь $1$, тогда как на остальных выходах будет $0$, значит, что значения на входах $x_0$, $x_1$, $\ldots$, $x_{i-1}$, $x_{i+1}$, $\ldots$, $x_{2^n-1}$ на ответ никак повлиять не могут. Теперь, если на входе $x_i$ было $0$, то на выходе $z$ будет $0$, если же на входе $x_i$ был $1$, то на выходе $z$ будет $1$.
+
Тогда давайте построим дешифратор <tex>{n}-to-{2^n}</tex> (это значит, что у дешифратора имеется <tex>n</tex> входов и <tex>2^n</tex> выходов), на вход ему подадим входы <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{n-1}</tex>, а выходы этого дешифратора обозначим как <tex>y_0</tex>, <tex>y_1</tex>, <tex>\ldots</tex>, <tex>y_{2^n-1}</tex>,  а потом с помощью гейта <tex>AND</tex> соединим выход <tex>y_i</tex> дешифратора с входом <tex>x_i</tex> мультиплексора, потом соединим все гейты с выходом <tex>z</tex>. Давайте разберёмся, почему эта схема правильная: очевидно, что если входы <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex> <tex>s_{n-1}</tex> кодируют вход <tex>i</tex>, то это значит, что только <tex>y_i</tex> выход дешифратора будет иметь <tex>1</tex>, тогда как на остальных выходах будет <tex>0</tex>, значит, что значения на входах <tex>x_0</tex>, <tex>x_1</tex>, <tex>\ldots</tex>, <tex>x_{i-1}</tex>, <tex>x_{i+1}</tex>, <tex>\ldots</tex>, <tex>x_{2^n-1}</tex> на ответ никак повлиять не могут. Теперь, если на входе <tex>x_i</tex> было <tex>0</tex>, то на выходе <tex>z</tex> будет <tex>0</tex>, если же на входе <tex>x_i</tex> был <tex>1</tex>, то на выходе <tex>z</tex> будет <tex>1</tex>.
  
 
==Принцип работы демультиплексора==
 
==Принцип работы демультиплексора==
Строка 71: Строка 71:
  
 
===Демультиплексор 1-to-2===
 
===Демультиплексор 1-to-2===
Рассмотрим демультиплексор $1-to-2$ (это значит, что у демультиплексора два выхода). Если на вход $s$ подать значение $0$, то на выход $z_0$ будет подаваться то же значение, которое подаётся на вход $y$, а на выход $z_1$ будет подаваться $0$. Если же на вход $s$ подать значение $1$, то на выход $z_0$ будет подаваться значение $0$, а на выход $z_1$ то же значение, которое будет подаваться на вход $y$. Для более лучшего понимания посмотрим на таблицу истинности.
+
Рассмотрим демультиплексор <tex>1-to-2</tex> (это значит, что у демультиплексора два выхода). Если на вход <tex>s</tex> подать значение <tex>0</tex>, то на выход <tex>z_0</tex> будет подаваться то же значение, которое подаётся на вход <tex>y</tex>, а на выход <tex>z_1</tex> будет подаваться <tex>0</tex>. Если же на вход <tex>s</tex> подать значение <tex>1</tex>, то на выход <tex>z_0</tex> будет подаваться значение <tex>0</tex>, а на выход <tex>z_1</tex> то же значение, которое будет подаваться на вход <tex>y</tex>. Для более лучшего понимания посмотрим на таблицу истинности.
  
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
! $s$ !! $y$ !! $z_0$ !! $z_1$
+
! <tex>s</tex> !! <tex>y</tex> !! <tex>z_0</tex> !! <tex>z_1</tex>
 
|-
 
|-
 
| '''0''' || '''0''' || '''0''' || 0
 
| '''0''' || '''0''' || '''0''' || 0
Строка 85: Строка 85:
 
| '''1''' || '''1''' || 0 || '''1'''
 
| '''1''' || '''1''' || 0 || '''1'''
 
|}
 
|}
+
 
 
===Демультиплексор 1-to-4===
 
===Демультиплексор 1-to-4===
Также рассмотрим демультиплексор $1-to-4$ (это значит, что у демультиплексора четыре выхода). Теперь у нас уже есть два входа $s_0$ и $s_1$, которые определяют, на какой из выходов $z_0$, $z_1$, $z_2$ или $z_3$ будет подаваться значение $y$, тогда как на остальные выходы будет подаваться $0$. В случае, когда $s_0 = s_1 = 0$, то на выход $z_0$ будет подаваться значение на входе $y$, тогда как на $z_1$, $z_2$ и $z_3$ будет подаваться $0$. Если же $s_0 = 1$ и $s_1 = 0$, то на выходы $z_0$, $z_2$ и $z_3$ будет подаваться $0$, а на выход $z_1$ будет подаваться то же, что подаётся на вход $y$. Аналогично разбираются случаи $s_0 = 0$, $s_1 = 1$ и $s_0 = s_1 = 1$. Для более лучшего понимания посмотрим на таблицу истинности.
+
Также рассмотрим демультиплексор <tex>1-to-4</tex> (это значит, что у демультиплексора четыре выхода). Теперь у нас уже есть два входа <tex>s_0</tex> и <tex>s_1</tex>, которые определяют, на какой из выходов <tex>z_0</tex>, <tex>z_1</tex>, <tex>z_2</tex> или <tex>z_3</tex> будет подаваться значение <tex>y</tex>, тогда как на остальные выходы будет подаваться <tex>0</tex>. В случае, когда <tex>s_0 = s_1 = 0</tex>, то на выход <tex>z_0</tex> будет подаваться значение на входе <tex>y</tex>, тогда как на <tex>z_1</tex>, <tex>z_2</tex> и <tex>z_3</tex> будет подаваться <tex>0</tex>. Если же <tex>s_0 = 1</tex> и <tex>s_1 = 0</tex>, то на выходы <tex>z_0</tex>, <tex>z_2</tex> и <tex>z_3</tex> будет подаваться <tex>0</tex>, а на выход <tex>z_1</tex> будет подаваться то же, что подаётся на вход <tex>y</tex>. Аналогично разбираются случаи <tex>s_0 = 0</tex>, <tex>s_1 = 1</tex> и <tex>s_0 = s_1 = 1</tex>. Для более лучшего понимания посмотрим на таблицу истинности.
  
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
! $s_0$ !! $s_1$ !! $y$ !! $z_0$ !! $z_1$ !! $z_2$ !! $z_3$
+
! <tex>s_0</tex> !! <tex>s_1</tex> !! <tex>y</tex> !! <tex>z_0</tex> !! <tex>z_1</tex> !! <tex>z_2</tex> !! <tex>z_3</tex>
 
|-
 
|-
 
| '''0''' || '''0''' || '''0''' || '''0''' || 0 || 0 || 0
 
| '''0''' || '''0''' || '''0''' || '''0''' || 0 || 0 || 0
Строка 116: Строка 116:
 
Построим схему, аналогичную схеме мультиплексора.
 
Построим схему, аналогичную схеме мультиплексора.
  
Тогда давайте построим дешифратор, ${n}-to-{2^n}$, на входы дешифратора подадим входы $s_0$, $s_1$, $\ldots$, $s_{n-1}$,  а выходы этого дешифратора мы обозначим как $y_0$, $y_1$, $\ldots$, $y_{2^n-1}$. Поставим $2^n$ гейтов $AND$ и соединим каждый из выходов дешифратора $y_0$, $y_1$, $\ldots$, $y_{2^n-1}$ со входом $x$ с помощью гейта $AND$, потом соединим соответственные гейты с выходами $z_0$, $z_1$, $\ldots$, $z_{2^n-1}$, причем мы соединим гейт $AND$ с выходом $z_i$, если на этот гейт приходится выход дешифратора $y_i$.
+
Тогда давайте построим дешифратор, <tex>{n}-to-{2^n}</tex>, на входы дешифратора подадим входы <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{n-1}</tex>,  а выходы этого дешифратора мы обозначим как <tex>y_0</tex>, <tex>y_1</tex>, <tex>\ldots</tex>, <tex>y_{2^n-1}</tex>. Поставим <tex>2^n</tex> гейтов <tex>AND</tex> и соединим каждый из выходов дешифратора <tex>y_0</tex>, <tex>y_1</tex>, <tex>\ldots</tex>, <tex>y_{2^n-1}</tex> со входом <tex>x</tex> с помощью гейта <tex>AND</tex>, потом соединим соответственные гейты с выходами <tex>z_0</tex>, <tex>z_1</tex>, <tex>\ldots</tex>, <tex>z_{2^n-1}</tex>, причем мы соединим гейт <tex>AND</tex> с выходом <tex>z_i</tex>, если на этот гейт приходится выход дешифратора <tex>y_i</tex>.
  
 
==См. также==
 
==См. также==

Версия 19:22, 3 декабря 2018

Эта статья находится в разработке!


Определение:
Мультиплексор (англ. multiplexer, или mux) - логический элемент, имеющий [math]2^n + n[/math] входов [math]x_0[/math], [math]x_1[/math], [math]\ldots[/math], [math]x_{2^n-1}[/math], [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math] и один выход [math]z[/math], на который подаётся значение на входе [math]x_i[/math], где [math]i[/math] - число, которое кодируется входами [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math].


Определение:
Демультиплексор (англ. demultiplexer, или demux) - логический элемент, имеющий [math]n+1[/math] входов [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math], [math]x[/math] и [math]2^n[/math] выходов [math]z_0[/math], [math]z_1[/math], [math]\ldots[/math], [math]z_{2^n-1}[/math]. На все выходы подаётся [math]0[/math] кроме выхода [math]z_i[/math], на который подаётся значение на входе [math]y[/math], где [math]i[/math] - число, которое кодируется входами [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math].


Принцип работы мультиплексора

2-to-1 мультиплексор
4-to-1 мультиплексор

Мультиплексор 2-to-1

Рассмотрим мультиплексор [math]2-to-1[/math] (это значит, что есть всего два входа [math]x_0[/math] и [math]x_1[/math], значения которых могут подаваться на вход [math]z[/math]). Переберём всевозможные варианты значений на входах. Если на [math]s[/math] подавать [math]0[/math], то на выход [math]z[/math] будет подаваться то же значение, которое подаётся на вход [math]x_0[/math], т.е. в данном случае значение на входе [math]x_1[/math] нас не интересует. Аналогично, если на вход [math]s[/math] подавать [math]1[/math], то на выход [math]z[/math] будет подаваться то же значение, которое подаётся на вход [math]x_1[/math]. Для более лучшего понимания посмотрим на таблицу истинности.

[math]s[/math] [math]x_0[/math] [math]x_1[/math] [math]z[/math]
0 0  ? 0
0 1  ? 1
1  ? 0 0
1  ? 1 1

Мультиплексор 4-to-1

Также рассмотрим мультиплексор [math]4-to-1[/math] (это значит, что есть четыре входа [math]x_0[/math], [math]x_1[/math], [math]x_2[/math] и [math]x_3[/math], значения которых могут подаваться на выход [math]z[/math]). Также переберём всевозможные варианты значений на входах. Тут уже 2 входа [math]s_0[/math] и [math]s_1[/math], которые определяют, значение какого из входов [math]x_0[/math], [math]x_1[/math], [math]x_2[/math] или [math]x_3[/math] будет подаваться на выход [math]z[/math]. Если [math]s_0 = s_1 = 0[/math], то на выход [math]z[/math] будет подаваться значение входа [math]x_0[/math], если [math]s_0 = 1[/math] и [math]s_1 = 0[/math] [math]-[/math] то значение [math]x_1[/math], если [math]s_0 = 0[/math] и [math]s_1 = 1[/math] [math]-[/math] то значение [math]x_2[/math], в противном случае [math]-[/math] значение [math]x_3[/math]. Для более лучшее понимания рекомендуется обратиться к таблице истинности.

[math]s_0[/math] [math]s_1[/math] [math]x_0[/math] [math]x_1[/math] [math]x_2[/math] [math]x_3[/math] [math]z[/math]
0 0 0  ?  ?  ? 0
0 0 1  ?  ?  ? 1
1 0  ? 0  ?  ? 0
1 0  ? 1  ?  ? 1
0 1  ?  ? 0  ? 0
0 1  ?  ? 1  ? 1
1 1  ?  ?  ? 0 0
1 1  ?  ?  ? 1 1

Логическая схема мультиплексора

Логическая схема мультиплексора 8-to-1

Заметим, что дешифратор имеет [math]n[/math] входов и [math]2^n[/math] выходов, причём на все выходы дешифратора подаётся [math]0[/math] кроме выхода [math]z_i[/math], на который подаётся [math]1[/math], где [math]i[/math] - число, которое кодируется его входами.

Тогда давайте построим дешифратор [math]{n}-to-{2^n}[/math] (это значит, что у дешифратора имеется [math]n[/math] входов и [math]2^n[/math] выходов), на вход ему подадим входы [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math], а выходы этого дешифратора обозначим как [math]y_0[/math], [math]y_1[/math], [math]\ldots[/math], [math]y_{2^n-1}[/math], а потом с помощью гейта [math]AND[/math] соединим выход [math]y_i[/math] дешифратора с входом [math]x_i[/math] мультиплексора, потом соединим все гейты с выходом [math]z[/math]. Давайте разберёмся, почему эта схема правильная: очевидно, что если входы [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math] [math]s_{n-1}[/math] кодируют вход [math]i[/math], то это значит, что только [math]y_i[/math] выход дешифратора будет иметь [math]1[/math], тогда как на остальных выходах будет [math]0[/math], значит, что значения на входах [math]x_0[/math], [math]x_1[/math], [math]\ldots[/math], [math]x_{i-1}[/math], [math]x_{i+1}[/math], [math]\ldots[/math], [math]x_{2^n-1}[/math] на ответ никак повлиять не могут. Теперь, если на входе [math]x_i[/math] было [math]0[/math], то на выходе [math]z[/math] будет [math]0[/math], если же на входе [math]x_i[/math] был [math]1[/math], то на выходе [math]z[/math] будет [math]1[/math].

Принцип работы демультиплексора

1-to-2 демультиплексор
1-to-4 демультиплексор

Демультиплексор 1-to-2

Рассмотрим демультиплексор [math]1-to-2[/math] (это значит, что у демультиплексора два выхода). Если на вход [math]s[/math] подать значение [math]0[/math], то на выход [math]z_0[/math] будет подаваться то же значение, которое подаётся на вход [math]y[/math], а на выход [math]z_1[/math] будет подаваться [math]0[/math]. Если же на вход [math]s[/math] подать значение [math]1[/math], то на выход [math]z_0[/math] будет подаваться значение [math]0[/math], а на выход [math]z_1[/math] то же значение, которое будет подаваться на вход [math]y[/math]. Для более лучшего понимания посмотрим на таблицу истинности.

[math]s[/math] [math]y[/math] [math]z_0[/math] [math]z_1[/math]
0 0 0 0
0 1 1 0
1 0 0 0
1 1 0 1

Демультиплексор 1-to-4

Также рассмотрим демультиплексор [math]1-to-4[/math] (это значит, что у демультиплексора четыре выхода). Теперь у нас уже есть два входа [math]s_0[/math] и [math]s_1[/math], которые определяют, на какой из выходов [math]z_0[/math], [math]z_1[/math], [math]z_2[/math] или [math]z_3[/math] будет подаваться значение [math]y[/math], тогда как на остальные выходы будет подаваться [math]0[/math]. В случае, когда [math]s_0 = s_1 = 0[/math], то на выход [math]z_0[/math] будет подаваться значение на входе [math]y[/math], тогда как на [math]z_1[/math], [math]z_2[/math] и [math]z_3[/math] будет подаваться [math]0[/math]. Если же [math]s_0 = 1[/math] и [math]s_1 = 0[/math], то на выходы [math]z_0[/math], [math]z_2[/math] и [math]z_3[/math] будет подаваться [math]0[/math], а на выход [math]z_1[/math] будет подаваться то же, что подаётся на вход [math]y[/math]. Аналогично разбираются случаи [math]s_0 = 0[/math], [math]s_1 = 1[/math] и [math]s_0 = s_1 = 1[/math]. Для более лучшего понимания посмотрим на таблицу истинности.

[math]s_0[/math] [math]s_1[/math] [math]y[/math] [math]z_0[/math] [math]z_1[/math] [math]z_2[/math] [math]z_3[/math]
0 0 0 0 0 0 0
0 0 1 1 0 0 0
1 0 0 0 0 0 0
1 0 1 0 1 0 0
0 1 0 0 0 0 0
0 1 1 0 0 1 0
1 1 0 0 0 0 0
1 1 1 0 0 0 1

Логическая схема демультиплексора

Логическая схема демультиплексора 1-to-8

Построим схему, аналогичную схеме мультиплексора.

Тогда давайте построим дешифратор, [math]{n}-to-{2^n}[/math], на входы дешифратора подадим входы [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math], а выходы этого дешифратора мы обозначим как [math]y_0[/math], [math]y_1[/math], [math]\ldots[/math], [math]y_{2^n-1}[/math]. Поставим [math]2^n[/math] гейтов [math]AND[/math] и соединим каждый из выходов дешифратора [math]y_0[/math], [math]y_1[/math], [math]\ldots[/math], [math]y_{2^n-1}[/math] со входом [math]x[/math] с помощью гейта [math]AND[/math], потом соединим соответственные гейты с выходами [math]z_0[/math], [math]z_1[/math], [math]\ldots[/math], [math]z_{2^n-1}[/math], причем мы соединим гейт [math]AND[/math] с выходом [math]z_i[/math], если на этот гейт приходится выход дешифратора [math]y_i[/math].

См. также

Источники информации