Расчёт вероятности поглощения в состоянии — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «Поглощающее(существенное) состояние цепи Маркова - состояние с вероятностью перехода в са…»)
 
Строка 1: Строка 1:
Поглощающее(существенное) состояние цепи Маркова - состояние с вероятностью перехода в самого себя <tex>p_{ii}=1</tex>.
+
{{Определение | definition =
 +
Поглощающее(существенное) состояние цепи Маркова - состояние с вероятностью перехода в самого себя <tex>p_{ii}=1</tex>.}}
  
 
Составим матрицу G, элементы которой <tex>g_{ij}</tex> равны вероятности того, что, выйдя из i, попадём в поглощающее состояние j.
 
Составим матрицу G, элементы которой <tex>g_{ij}</tex> равны вероятности того, что, выйдя из i, попадём в поглощающее состояние j.
 
Пусть тогда этот переход будет осуществлён за r шагов:  i &rarr;  <tex>i_{1}</tex> &rarr; <tex>i_{2}</tex> &rarr; ... &rarr; <tex>i_{r-1}</tex> &rarr; j, где все <tex>i, i_{1}, ... i_{r-1}</tex> являются несущественными.
 
Пусть тогда этот переход будет осуществлён за r шагов:  i &rarr;  <tex>i_{1}</tex> &rarr; <tex>i_{2}</tex> &rarr; ... &rarr; <tex>i_{r-1}</tex> &rarr; j, где все <tex>i, i_{1}, ... i_{r-1}</tex> являются несущественными.
 
Тогда <tex>G = \sum\limits_{r = 1}^{\infty}{\sum\limits_{\forall(i_{1} ... i_{r-1})} {p_{i, i_{1}} \cdot p_{i_{1}, i_{2}} \cdot ... \cdot p_{i_{r-1}, j}}}</tex>.
 
Тогда <tex>G = \sum\limits_{r = 1}^{\infty}{\sum\limits_{\forall(i_{1} ... i_{r-1})} {p_{i, i_{1}} \cdot p_{i_{1}, i_{2}} \cdot ... \cdot p_{i_{r-1}, j}}}</tex>.

Версия 10:24, 15 января 2011

Определение:
Поглощающее(существенное) состояние цепи Маркова - состояние с вероятностью перехода в самого себя [math]p_{ii}=1[/math].


Составим матрицу G, элементы которой [math]g_{ij}[/math] равны вероятности того, что, выйдя из i, попадём в поглощающее состояние j. Пусть тогда этот переход будет осуществлён за r шагов: i → [math]i_{1}[/math][math]i_{2}[/math] → ... → [math]i_{r-1}[/math] → j, где все [math]i, i_{1}, ... i_{r-1}[/math] являются несущественными. Тогда [math]G = \sum\limits_{r = 1}^{\infty}{\sum\limits_{\forall(i_{1} ... i_{r-1})} {p_{i, i_{1}} \cdot p_{i_{1}, i_{2}} \cdot ... \cdot p_{i_{r-1}, j}}}[/math].