Сверточные нейронные сети — различия между версиями
(Зачаток страницы) |
(нет различий)
|
Версия 13:21, 21 декабря 2018
Сверточная нейронная сеть (англ. convolutional neural network, CNN) — специальная архитектура нейронных сетей, предложенная Яном Лекуном, изначально нацеленная на эффективное распознавание изображений.
Свертка
Свертка (англ. convolution) — операция над парой матриц
(размера ) и (размера ), результатом которой является матрица размера . Каждый элемент результата вычисляется как скалярное произведение матрицы и некоторой подматрицы такого же размера (подматрица определяется положением элемента в результате). То есть, . На изображении справа можно видеть, как матрица {{<<}}двигается{{>>}} по матрице , и в каждом положении считается скалярное произведение матрицы и той части матрицы , на которую она сейчас наложена. Получившееся число записывается в соответствующий элемент результата.Логический смысл свертки такой — чем больше величина элемента свертки, тем больше эта часть матрицы
была похожа на матрицу (похожа в смысле скалярного произведения). Поэтому матрицу называют изображением, а матрицу — фильтром или образцом.