Группы. Действие группы на множестве — различия между версиями
Perveevm (обсуждение | вклад) |
Perveevm (обсуждение | вклад) |
||
| Строка 8: | Строка 8: | ||
== Примеры == | == Примеры == | ||
* TODO | * TODO | ||
| + | |||
| + | == Эквивалентность по группе == | ||
| + | {{Определение | ||
| + | |id=eq | ||
| + | |definition=Пусть группа <tex>G</tex> действует на множестве <tex>X</tex>. Введем на <tex>X</tex> '''отношение эквивалентности''' <tex>\sim</tex> для <tex>x, y \in X</tex>: <tex>x \sim y</tex>, если <tex>\exists g \in G : x = g \cdot y</tex>. | ||
| + | }} | ||
== Орбита и стабилизатор == | == Орбита и стабилизатор == | ||
| Строка 15: | Строка 21: | ||
}} | }} | ||
Иными словами, орбитой элемента множества <tex>X</tex> в группе <tex>G</tex> называется порожденный им класс эквивалентности по отношению <tex>\sim</tex>. | Иными словами, орбитой элемента множества <tex>X</tex> в группе <tex>G</tex> называется порожденный им класс эквивалентности по отношению <tex>\sim</tex>. | ||
| + | {{Определение | ||
| + | |id=point | ||
| + | |definition=Элемент <tex>x \in X</tex> называется '''неподвижной точкой''' элемента <tex>g \in G</tex>, если <tex>g \cdot x = x</tex> | ||
| + | }} | ||
{{Определение | {{Определение | ||
|id=stabilizer | |id=stabilizer | ||
| − | |definition=Пусть группа <tex>G</tex> действует на множество <tex>X</tex>. Тогда '''стабилизатором''' элемента <tex>g \in G</tex> называется множество: <tex>St(g) = \{x \in X \mid g \cdot x = x\}</tex> | + | |definition=Пусть группа <tex>G</tex> действует на множество <tex>X</tex>. Тогда '''стабилизатором''' элемента <tex>g \in G</tex> называется множество его неподвижных точек: <tex>St(g) = \{x \in X \mid g \cdot x = x\}</tex> |
}} | }} | ||
Версия 22:35, 25 декабря 2018
| Определение: |
| Группа действует на множестве , если задано отображение (обозначается ), такое что для любого , а также для любых оно обладает свойствами:
|
Примеры
- TODO
Эквивалентность по группе
| Определение: |
| Пусть группа действует на множестве . Введем на отношение эквивалентности для : , если . |
Орбита и стабилизатор
| Определение: |
| Пусть группа действует на множество . Тогда орбитой элемента называется множество: |
Иными словами, орбитой элемента множества в группе называется порожденный им класс эквивалентности по отношению .
| Определение: |
| Элемент называется неподвижной точкой элемента , если |
| Определение: |
| Пусть группа действует на множество . Тогда стабилизатором элемента называется множество его неподвижных точек: |