Материал из Викиконспекты
|
|
Строка 2: |
Строка 2: |
| | | |
| {{Лемма | | {{Лемма |
− | |statement = <tex>M = \langle X, I \rangle</tex> — матроид, <tex> f \colon X \to Y</tex>. Тогда <tex>M_1 = \langle Y, I_1 = \mathcal \{ f(A) \mid A \in I \mathcal \} \rangle </tex> является матроидом. | + | |statement = <tex>M = \langle X, I \rangle</tex> — [[Определение матроида|матроид]], <tex> f \colon X \to Y</tex>. Тогда <tex>M_1 = \langle Y, I_1 = \mathcal \{ f(A) \mid A \in I \mathcal \} \rangle </tex> является матроидом. |
| |proof = | | |proof = |
| Докажем аксиомы независимости для <tex> I_1 </tex>. | | Докажем аксиомы независимости для <tex> I_1 </tex>. |
Версия 18:08, 5 января 2019
Лемма: |
[math]M = \langle X, I \rangle[/math] — матроид, [math] f \colon X \to Y[/math]. Тогда [math]M_1 = \langle Y, I_1 = \mathcal \{ f(A) \mid A \in I \mathcal \} \rangle [/math] является матроидом. |
Доказательство: |
[math]\triangleright[/math] |
Докажем аксиомы независимости для [math] I_1 [/math].
- [math]\varnothing \in I_1[/math]
[math] \varnothing = f(\varnothing) \in I_1 [/math]
- [math]B \subset A, A \in I_1 \Rightarrow B \in I_1[/math]
[math]A \in I_1[/math], значит [math]\exists S, S \in I[/math], такое, что [math] A = f(S)[/math]. Из этого следует, что [math]\forall x \in A\ f^{-1}(x) \cap S \ne \varnothing[/math]. Пусть [math] T = \{x \in S | f(x) \in B\}[/math]. Тогда [math] B = f(T) [/math] и из этого [math] T \subseteq S, T \in I [/math] и [math] B \in I_1 [/math], ч. т. д.
- Пусть [math] A \in I_1, A = f(S), B \in I_1, B = f(T), |A| \gt |B|[/math]. Докажем, что [math]\exists y \in A \setminus B, B \cup \mathcal \{ y \mathcal \} \in I_1[/math]
[math]A = f(S) \Rightarrow \exists S_1 \subset S, A = f(S_1), |S_1| = |A| [/math]. [math]B = f(T) \Rightarrow \exists T_1 \subset T, B = f(T_1), |T_1| = |B| [/math]. [math]S_1 \in I, T_1 \in I[/math] по второй аксиоме для [math]M[/math]. [math] |S_1| \gt |T_1| [/math], значит по третьей аксиоме для [math]M[/math], [math]\exists x \in S_1 \setminus T_1, T_1 \cup \mathcal \{ x \mathcal \} \in I[/math]. Следовательно [math]f(T_1 \cup \mathcal \{ x \mathcal \}) \in I_1 [/math] и [math]f(x) \in f(S_1 \setminus T_1) = A \setminus B. [/math] Также [math] f(T_1 \cup \mathcal \{ x \mathcal \}) = f(T_1) \cup f(x) = B \cup f(x)[/math]. Значит [math]\exists y = f(x) \in A \setminus B , B \cup \mathcal \{ y \mathcal \} \in I_1[/math]
|
[math]\triangleleft[/math] |
Теорема: |
|
Доказательство: |
[math]\triangleright[/math] |
Рассмотрим матроиды [math]M_1[/math] и [math]M_2[/math] из определения объединения матроидов. Из леммы знаем, что [math] M_1 \oplus M_2= \langle X = X_1 \times \mathcal \{ 1 \mathcal \} \cup X_2 \times \mathcal \{ 2 \mathcal \}, I = \mathcal \{ A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal \} \rangle [/math] , где [math] X_1 \times \mathcal \{ i \mathcal \} [/math] — декартово произведение множеств [math] X_1 [/math] и [math] \mathcal \{ i \mathcal \} [/math], является матроидом. Пусть [math]f \colon X_1 \times \mathcal \{ 1 \mathcal \} \cup X_2 \times \mathcal \{ 2 \mathcal \} \to X_1 \cup X_2 [/math], такая, что [math]f(x \times \mathcal \{ 1 \mathcal \}) \rightarrow x [/math], [math]f(x \times \mathcal \{ 2 \mathcal \}) \rightarrow x [/math]. Тогда по вышеизложенной лемме [math] M_3 = \langle X_1 \cup X_2, I_3 = \mathcal \{ f(A) \mid A \in I \mathcal \} \rangle[/math] — матроид, в котором независимым множествам соответствуют объединения независимых множеств в [math]M_1[/math] и [math]M_2[/math]. То есть [math]M_3 = M_1 \cup M_2[/math]. |
[math]\triangleleft[/math] |
См. также
Источники информации