Примеры кода на Scala — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Популярные библиотеки)
Строка 5: Строка 5:
 
* Smpile<ref>[https://haifengl.github.io/smile/ Smile, Statistical Machine Intelligence and Learning Engine]</ref> {{---}} развивающийся проект, похожий на scikit-learn<ref>[https://scikit-learn.org/ scikit-learn]</ref>, разработанный на Java и имеющий API для Scala. Имеет большой набор алгоритмов для решения задач классификации, регрессии, выбора фичей и другого.
 
* Smpile<ref>[https://haifengl.github.io/smile/ Smile, Statistical Machine Intelligence and Learning Engine]</ref> {{---}} развивающийся проект, похожий на scikit-learn<ref>[https://scikit-learn.org/ scikit-learn]</ref>, разработанный на Java и имеющий API для Scala. Имеет большой набор алгоритмов для решения задач классификации, регрессии, выбора фичей и другого.
 
* Apache Spark MLlib<ref>[https://spark.apache.org/mllib/ Apache Spark MLlib]</ref> {{---}} построенная на Spark<ref>[https://spark.apache.org/ Apache Spark]</ref> имеет большой набор алгоритмов, написанный на Scala.
 
* Apache Spark MLlib<ref>[https://spark.apache.org/mllib/ Apache Spark MLlib]</ref> {{---}} построенная на Spark<ref>[https://spark.apache.org/ Apache Spark]</ref> имеет большой набор алгоритмов, написанный на Scala.
 +
* DeepLearning.scala <ref>[https://deeplearning.thoughtworks.school/ DeppLearning.scala]</ref> {{---}} набор инструментов для глубокого обучения<ref>[http://neerc.ifmo.ru/wiki/index.php?title=%D0%93%D0%BB%D1%83%D0%B1%D0%BE%D0%BA%D0%BE%D0%B5_%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5 Глубокое обучение]</ref>. Позволяет создавать динамические нейронные сети, давая возможность параллельных вычеслений.
  
 
== Примечания ==
 
== Примечания ==
 
<references/>
 
<references/>

Версия 19:03, 12 января 2019

[WIP]

Популярные библиотеки

  • Breeze[1] — библиотека, которая копирует реализует идеи строения структур данных из MATLAB[2] и NumPy[3]. Breeze позволяет быстро манипулировть данными и позволяет реализовавать матричные и веторные операции, решать задачи оптимизации, обрабатывать сигналы устройств.
  • Epic[4] — часть ScalaNLP, позволяющая парсить и обрабатывать текст, поддерживающая использование GPU. Так же имеет фрэймворк для предсказаний текста.
  • Smpile[5] — развивающийся проект, похожий на scikit-learn[6], разработанный на Java и имеющий API для Scala. Имеет большой набор алгоритмов для решения задач классификации, регрессии, выбора фичей и другого.
  • Apache Spark MLlib[7] — построенная на Spark[8] имеет большой набор алгоритмов, написанный на Scala.
  • DeepLearning.scala [9] — набор инструментов для глубокого обучения[10]. Позволяет создавать динамические нейронные сети, давая возможность параллельных вычеслений.

Примечания