Примеры кода на Scala — различия между версиями
(→Популярные библиотеки) |
|||
Строка 5: | Строка 5: | ||
* Smpile<ref>[https://haifengl.github.io/smile/ Smile, Statistical Machine Intelligence and Learning Engine]</ref> {{---}} развивающийся проект, похожий на scikit-learn<ref>[https://scikit-learn.org/ scikit-learn]</ref>, разработанный на Java и имеющий API для Scala. Имеет большой набор алгоритмов для решения задач классификации, регрессии, выбора фичей и другого. | * Smpile<ref>[https://haifengl.github.io/smile/ Smile, Statistical Machine Intelligence and Learning Engine]</ref> {{---}} развивающийся проект, похожий на scikit-learn<ref>[https://scikit-learn.org/ scikit-learn]</ref>, разработанный на Java и имеющий API для Scala. Имеет большой набор алгоритмов для решения задач классификации, регрессии, выбора фичей и другого. | ||
* Apache Spark MLlib<ref>[https://spark.apache.org/mllib/ Apache Spark MLlib]</ref> {{---}} построенная на Spark<ref>[https://spark.apache.org/ Apache Spark]</ref> имеет большой набор алгоритмов, написанный на Scala. | * Apache Spark MLlib<ref>[https://spark.apache.org/mllib/ Apache Spark MLlib]</ref> {{---}} построенная на Spark<ref>[https://spark.apache.org/ Apache Spark]</ref> имеет большой набор алгоритмов, написанный на Scala. | ||
+ | * DeepLearning.scala <ref>[https://deeplearning.thoughtworks.school/ DeppLearning.scala]</ref> {{---}} набор инструментов для глубокого обучения<ref>[http://neerc.ifmo.ru/wiki/index.php?title=%D0%93%D0%BB%D1%83%D0%B1%D0%BE%D0%BA%D0%BE%D0%B5_%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5 Глубокое обучение]</ref>. Позволяет создавать динамические нейронные сети, давая возможность параллельных вычеслений. | ||
== Примечания == | == Примечания == | ||
<references/> | <references/> |
Версия 19:03, 12 января 2019
[WIP]
Популярные библиотеки
- Breeze[1] — библиотека, которая копирует реализует идеи строения структур данных из MATLAB[2] и NumPy[3]. Breeze позволяет быстро манипулировть данными и позволяет реализовавать матричные и веторные операции, решать задачи оптимизации, обрабатывать сигналы устройств.
- Epic[4] — часть ScalaNLP, позволяющая парсить и обрабатывать текст, поддерживающая использование GPU. Так же имеет фрэймворк для предсказаний текста.
- Smpile[5] — развивающийся проект, похожий на scikit-learn[6], разработанный на Java и имеющий API для Scala. Имеет большой набор алгоритмов для решения задач классификации, регрессии, выбора фичей и другого.
- Apache Spark MLlib[7] — построенная на Spark[8] имеет большой набор алгоритмов, написанный на Scala.
- DeepLearning.scala [9] — набор инструментов для глубокого обучения[10]. Позволяет создавать динамические нейронные сети, давая возможность параллельных вычеслений.