Кросс-валидация — различия между версиями
Vi34 (обсуждение | вклад) (→Определения и обозначения) |
Vi34 (обсуждение | вклад) (→Полная кросс-валидация (Complete cross-validation)) |
||
Строка 37: | Строка 37: | ||
<tex>CVV_t = \frac{1}{C_l^{l-t}} | <tex>CVV_t = \frac{1}{C_l^{l-t}} | ||
\displaystyle\sum_{T^l = T^t \cup T^{l-t}} Q(\mu(T^t), T^{l-t}) \to min </tex> | \displaystyle\sum_{T^l = T^t \cup T^{l-t}} Q(\mu(T^t), T^{l-t}) \to min </tex> | ||
+ | |||
+ | Здесь число разбиений <tex>C_l^{l-t}</tex> становится слишком большим даже при сравнительно малых значениях t, что затрудняет практическое применение данного метода. | ||
=== k-fold кросс-валидация === | === k-fold кросс-валидация === |
Версия 15:40, 22 января 2019
Кросс-валидация или скользящий контроль это процедура эмпирического оценивания обобщающей способности алгоритмов. С помощью кросс-валидации эмулируется наличие тестовой выборки, которая не участвует в обучении, но для которой известны правильные ответы.
Содержание
- 1 Определения и обозначения
- 2 Разновидности Кросс-валидации
- 2.1 Валидация на отложенных данных (Hold-Out Validation)
- 2.2 Полная кросс-валидация (Complete cross-validation)
- 2.3 k-fold кросс-валидация
- 2.4 t×k-fold кросс-валидация
- 2.5 Кросс-валидация по отдельным объектам (leave-one-out)
- 2.6 Случайные разбиения (Random subsampling)
- 2.7 Критерий целостности модели (Model consistency criterion)
- 3 См. также
- 4 Примечания
- 5 Источники информации
Определения и обозначения
Пусть признаков, описывающих объекты, а — конечное множество меток.
— множество— обучающая выборка.
— мера качества. —
— алгоритм обучения.
Разновидности Кросс-валидации
Валидация на отложенных данных (Hold-Out Validation)
Обучающая выборка один раз случайным образом разбивается на две части
После чего решается задача оптимизации:
Метод Hold-out применяется в случаях больших датасетов, т.к. требует меньше вычислительных мощностей по сравнению с другими методами кросс-валидации. Недостатком метода является то, что оценка существенно зависит от разбиения, тогда как желательно, чтобы она характеризовала только алгоритм обучения.
Полная кросс-валидация (Complete cross-validation)
- Выбирается значение
- Выборка разбивается всеми возможными способами на две части
Здесь число разбиений
становится слишком большим даже при сравнительно малых значениях t, что затрудняет практическое применение данного метода.k-fold кросс-валидация
- Обучающая выборка разбивается на непересекающихся одинаковых по объему частей
- Производится
- Модель обучается на части обучающей выборки;
- Модель тестируется на части обучающей выборки, которая не участвовала в обучении;
итераций. На каждой итерации происходит следующее:
Каждая из
частей единожды используется для тестирования. Как правило (5 в случае малого размера выборки)
t×k-fold кросс-валидация
- Процедура выполняется
- Обучающая выборка случайным образом разбивается на непересекающихся одинаковых по объему частей
- Производится
- Модель обучается на части обучающей выборки;
- Модель тестируется на части обучающей выборки, которая не участвовала в обучении;
итераций. На каждой итерации происходит следующее:
раз:
Кросс-валидация по отдельным объектам (leave-one-out)
Выборка разбивается на
и 1 объект раз., где
Преимущества LOO в том, что каждый объект ровно один раз участвует в контроле, а длина обучающих подвыборок лишь на единицу меньше длины полной выборки.
Недостатком LOO является большая ресурсоёмкость, так как обучаться приходится L раз. Некоторые методы обучения позволяют достаточно быстро перенастраивать внутренние параметры алгоритма при замене одного обучающего объекта другим. В этих случаях вычисление LOO удаётся заметно ускорить.
Случайные разбиения (Random subsampling)
Выборка разбивается в случайной пропорции. Процедура повторяется несколько раз.
Критерий целостности модели (Model consistency criterion)
Не переобученый алгоритм должен показывать одинаковую эффективность на каждой части
Метод может быть обобщен как аналог
.См. также
- Общие понятия[на 17.01.19 не создан]
- Модель алгоритма и ее выбор
- Мета-обучение[на 17.01.19 не создан]
Примечания
Источники информации
- Скользящий контроль - статья на MachineLearning.ru
- Model assessment and selection