Использование обхода в глубину для поиска компонент сильной связности — различия между версиями
(→Алгоритм) |
Max1992r (обсуждение | вклад) (→Пример реализации) |
||
Строка 59: | Строка 59: | ||
} | } | ||
− | По окончании выполнения алгоритма в component[i] имеем номер компоненты, к которой принадлежит вершина ''i'' | + | По окончании выполнения алгоритма в <tex>component[i]</tex> имеем номер компоненты, к которой принадлежит вершина ''i'' |
Версия 21:31, 15 января 2011
Постановка задачи
Дан ориентированный граф G. Требуется найти в этом графе компоненты сильной связанности.
Алгоритм
Определение: |
Дополнением или обратным к графу | называется такой граф , имеющий то же множество вершин, что и , но в котором две несовпадающие вершины смежны тогда и только тогда, когда они не смежны в
Данная задачи решается с помощью поиска в глубину в 3 этапа:
- Построить обратный граф
- Выполнить в обратном графе поиск в глубину и найти - время окончания обработки вершины
- Выполнить поиск глубину в , перебирая вершины во внешнем цикле в порядке убывания
Полученные на 3-ем этапе деревья поиска в глубину будут являться компонентами сильной связности графа
Так как компоненты сильной связности исходного и обратного графа совпадают, то первый поиск в глубину для нахождения можно выполнить на графе , а второй - на обратном.Доказательство
Рассмотрим пару вершин
и . Если вершины и взаимно достижимы, то они обязательно будут находиться в одном дереве поиска в глубину, поскольку, когда просматривается первая из них, вторая остаётся непосещённой и достижимой из первой и будет просмотрена, прежде чем завершится рекурсивный вызов из корня. Теперь докажем, что если и находятся в одном дереве поиска, то они являются сильно связанными. Пусть - корень этого дерева. Тогда достижима из , из чего следует, что в обратном графе достижима из . Но имеет большее время окончания обработки > , из чего следует что в обратном графе существует путь из в . Тогда в исходном графе существуют пути как из в , так и из в , т.е. и сильно связаны. Те же рассуждения доказывают, что и сильно связаны, из чего следует что и также сильно связаны.Пример реализации
vector<vector<int>> g, g1; //g хранит граф в виде списка смежностей, g1 - обратный vector<int> color, ord, component; //цвет вершины, список вершин в порядке окончания обработки, номер компоненты, к который относиться вершина int col; //номер текущей компоненты void dfs(int & v) //первый поиск в глубину, определяющий порядок обхода { color[v] = 1; for (unsigned i = 0; i < g[v].size(); ++i) { if (color[g[v][i]] == 0) dfs(g[v][i]); } ord.push_back(v); } void dfs2(int & v) //второй поиск в глубину, выявляет компоненты сильной связности в графе { component[v] = col; for (unsigned i = 0; i < g1[v].size(); i ++ ) { if (component[g1[v][i]] == 0) dfs2(g1[v][i]); } } int main() { ... //считываем исходные данные, формируем массивы g и g1 for (int i = 1; i <= n; ++i) //формируем массив ord[] { if (color[i] == 0) dfs(i); } col = 1; for (int i = ord.size(); i > 0; --i) //ищем компоненты связности, вызывая вершины в обратном порядке { //от сохранённого в ord[], что соответствует уменьшению времени конца обработки f[] if (component[ord[i - 1]] == 0) dfs2(ord[i - 1]), col++; } }
По окончании выполнения алгоритма в
имеем номер компоненты, к которой принадлежит вершина i