Логистическая регрессия — различия между версиями
Строка 15: | Строка 15: | ||
<center><tex>\mathbb{P}\{y|x\} = \sigma\left( y \langle x,w \rangle\right),\;\; y\in Y</tex></center> | <center><tex>\mathbb{P}\{y|x\} = \sigma\left( y \langle x,w \rangle\right),\;\; y\in Y</tex></center> | ||
где $\sigma(z) = \frac1{1+e^{-z}}$ — сигмоидная функция. | где $\sigma(z) = \frac1{1+e^{-z}}$ — сигмоидная функция. | ||
− | |||
− | |||
== Обоснование == | == Обоснование == | ||
'''С точки зрения [[Байесовский классификатор|байесовского классификатора]]''' | '''С точки зрения [[Байесовский классификатор|байесовского классификатора]]''' | ||
Строка 56: | Строка 54: | ||
Следовательно, разделяющая поверхность линейна. | Следовательно, разделяющая поверхность линейна. | ||
}} | }} | ||
+ | == Пример кода для scikit-learn == | ||
− | + | '''from''' sklearn.linear_model '''import''' LogisticRegression | |
− | + | '''from''' sklearn '''import''' datasets | |
+ | '''from''' sklearn.model_selection '''import''' train_test_split |
Версия 16:11, 23 января 2019
Логистическая регрессия (англ. logistic regression) — метод построения линейного классификатора[на 23.01.19 не создан], позволяющий оценивать апостериорные вероятности принадлежности объектов классам.
Описание
Логистическая регрессия применяется для прогнозирования вероятности возникновения некоторого события по значениям множества признаков. Для этого вводится зависимая переменная $y$, принимающая значения $0$ и $1$ и множество независимых переменных на основе значений которых требуется вычислить вероятность принятия того или иного значения зависимой переменной.
Итак, пусть объекты задаются $n$ числовымы признаками $f_j : X \to R, j = 1 ... n$ и пространство признаковых описаний в таком случае $X = R^n$. Пусть $Y$ $-$ конечное множество меток классов и задана обучающая выборка пар «объект-ответ»
Рассмотрим случай двух классов: $Y = \{-1, +1\}$. В логистической регрессии строится линейный алгоритм классификации $a: X \to Y$ вида
где $w_j$ $-$ вес $j$-го признака, $w_0$ $-$ порог принятия решения, $w=\left(w_0, ..., w_n\right)$ $-$ вектор весов, $\left<x, w\right>$ $-$ скалярное произведение признакового описания объекта на вектор весов. Предполагается, что искусственно введён нулевой признак: $f_{0}(x)=-1$.
Задача обучения линейного классификатора заключается в том, чтобы по выборке $X^m$ настроить вектор весов $w$. В логистической регрессии для этого решается задача минимизации эмпирического риска с функцией потерь специального вида:После того, как решение $w$ найдено, становится возможным не только вычислять классификацию $a(x) = \mathrm{sign}\langle x,w \rangle$ для произвольного объекта $x$, но и оценивать апостериорные вероятности его принадлежности классам:
где $\sigma(z) = \frac1{1+e^{-z}}$ — сигмоидная функция.
Обоснование
С точки зрения байесовского классификатора
Наиболее строгое обоснование логистической регрессии опирается на следующую теорему
Теорема: |
Пусть
Тогда
|
Доказательство: |
Рассмотрим отношение апостериорных вероятностей классов и воспользуемся тем, что $p_y(x)$ — экспонентные плотности с параметрами $\theta_y$ и $\delta$: где $\mathrm{P}_+$ $-$ априорные вероятности, $p_+(x)$ $-$ функции правдоподобия $w=c_+(\delta)\theta_+-c_-(\delta)\theta_- = const(x)$ Здесь вектор $w$ не зависит от $x$ и является вектором свободных коэффициентов при признаках. Все слагаемые под экспонентой, не зависящие от $x$, можно считать аддитивной добавкой к коэффициенту при константном признаке. Поскольку свободные коэффициенты настраиваются по обучающей выборке, вычислять эту аддитивную добавку нет никакого смысла, и её можно включить в $\langle w, x\rangle$. Следовательно, Используя формулу полной вероятности выразим апостериорные вероятности Объединяя эти два равенства в одно, получаем требуемое: Разделяющая поверхность в байесовском решающем правиле определяется уравнением которое равносильно |
Пример кода для scikit-learn
from sklearn.linear_model import LogisticRegression from sklearn import datasets from sklearn.model_selection import train_test_split