Виды ансамблей — различия между версиями
Sokolova (обсуждение | вклад) (Новая страница: «==Бутстрэп== Метод бутстрэпа (англ. ''bootstrap'') — один из первых и самых простых видов ансамбл…») |
Sokolova (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | ==Бутстрэп== | + | |
+ | == Бутстрэп == | ||
Метод бутстрэпа (англ. ''bootstrap'') — один из первых и самых простых видов ансамблей, который позволяет оценивать многие статистики сложных распределений и заключается в следующем. Пусть имеется выборка <tex>X</tex> размера <tex>N</tex>. Равномерно возьмем из выборки <tex>N</tex> объектов с возвращением. Это означает, что мы будем <tex>N</tex> раз равновероятно выбирать произвольный объект выборки, причем каждый раз мы выбираем из всех исходных <tex>N</tex> объектов. Отметим, что из-за возвращения среди них окажутся повторы. <br>Обозначим новую выборку через <tex>X_1</tex>. Повторяя процедуру <tex>M</tex> раз, сгенерируем <tex>M</tex> подвыборок <tex>X_1 ... X_M</tex>. Теперь мы имеем достаточно большое число выборок и можем оценивать различные статистики исходного распределения. | Метод бутстрэпа (англ. ''bootstrap'') — один из первых и самых простых видов ансамблей, который позволяет оценивать многие статистики сложных распределений и заключается в следующем. Пусть имеется выборка <tex>X</tex> размера <tex>N</tex>. Равномерно возьмем из выборки <tex>N</tex> объектов с возвращением. Это означает, что мы будем <tex>N</tex> раз равновероятно выбирать произвольный объект выборки, причем каждый раз мы выбираем из всех исходных <tex>N</tex> объектов. Отметим, что из-за возвращения среди них окажутся повторы. <br>Обозначим новую выборку через <tex>X_1</tex>. Повторяя процедуру <tex>M</tex> раз, сгенерируем <tex>M</tex> подвыборок <tex>X_1 ... X_M</tex>. Теперь мы имеем достаточно большое число выборок и можем оценивать различные статистики исходного распределения. | ||
− | ==Бэггинг== | + | == Бэггинг == |
Рассмотрим, следующий вид ансамбля — бэггинг (англ. ''bootstrap aggregation''). Пусть имеется обучающая выборка <tex>X</tex>. С помощью бутстрэпа сгенерируем из неё выборки <tex>X_1 ... X_M</tex>. Теперь на каждой выборке обучим свой классификатор <tex>a_i(x)</tex>. Итоговый классификатор будет усреднять ответы всех этих алгоритмов <tex>a(x) = \frac{1}{M} \sum\limits_{i = 1}^{M} a_i(x)</tex>. | Рассмотрим, следующий вид ансамбля — бэггинг (англ. ''bootstrap aggregation''). Пусть имеется обучающая выборка <tex>X</tex>. С помощью бутстрэпа сгенерируем из неё выборки <tex>X_1 ... X_M</tex>. Теперь на каждой выборке обучим свой классификатор <tex>a_i(x)</tex>. Итоговый классификатор будет усреднять ответы всех этих алгоритмов <tex>a(x) = \frac{1}{M} \sum\limits_{i = 1}^{M} a_i(x)</tex>. |
Версия 23:35, 23 января 2019
Бутстрэп
Метод бутстрэпа (англ. bootstrap) — один из первых и самых простых видов ансамблей, который позволяет оценивать многие статистики сложных распределений и заключается в следующем. Пусть имеется выборка
Обозначим новую выборку через . Повторяя процедуру раз, сгенерируем подвыборок . Теперь мы имеем достаточно большое число выборок и можем оценивать различные статистики исходного распределения.
Бэггинг
Рассмотрим, следующий вид ансамбля — бэггинг (англ. bootstrap aggregation). Пусть имеется обучающая выборка
. С помощью бутстрэпа сгенерируем из неё выборки . Теперь на каждой выборке обучим свой классификатор . Итоговый классификатор будет усреднять ответы всех этих алгоритмов .