Общие понятия — различия между версиями
м (Save) |
|||
Строка 4: | Строка 4: | ||
'''Машинное обучение''' (англ. ''Machine learning'') {{---}} процесс, который даёт возможность компьютерам обучаться выполнять что-то без явного написания кода. | '''Машинное обучение''' (англ. ''Machine learning'') {{---}} процесс, который даёт возможность компьютерам обучаться выполнять что-то без явного написания кода. | ||
}} | }} | ||
− | A.L. Samuel Some Studies in Machine Learning Using the Game of Checkers | + | ''A.L. Samuel "Some Studies in Machine Learning Using the Game of Checkers" (IBM Journal. July 1959. P. 210–229)'' |
{{Определение | {{Определение | ||
Строка 10: | Строка 10: | ||
Говорят, что компьютерная '''программа учится''' на опыте $E$ относительно некоторой задачи $T$ и некоторой меры производительности $P$, если ее производительность на $T$, измеренная $P$, улучшается с опытом $E$. | Говорят, что компьютерная '''программа учится''' на опыте $E$ относительно некоторой задачи $T$ и некоторой меры производительности $P$, если ее производительность на $T$, измеренная $P$, улучшается с опытом $E$. | ||
}} | }} | ||
− | T.M. Mitchell Machine Learning | + | ''T.M. Mitchell "Machine Learning" (McGraw-Hill, 1997)'' |
== Задача обучения == | == Задача обучения == | ||
Строка 25: | Строка 25: | ||
* упорядоченный (''ordinal''): $D_j$ конечно и упорядоченно | * упорядоченный (''ordinal''): $D_j$ конечно и упорядоченно | ||
* количественный (''numerical''): $D_j = \mathbb{R}$ | * количественный (''numerical''): $D_j = \mathbb{R}$ | ||
− | == | + | |
+ | Объект представляется как набор признаков $(f_1(x),... ,f_n(x))$. Данные обычно представляются в виде матрицы объектов-признаков <br /> | ||
+ | <tex> | ||
+ | F = ||f_j(x_i)||_{[l \times n]} = | ||
+ | \begin{pmatrix} | ||
+ | f_1(x_1) & \cdots & f_n(x_1) \\ | ||
+ | \cdots & \cdots & \cdots \\ | ||
+ | f_1(x_l) & \cdots & f_n(x_l) \\ | ||
+ | \end{pmatrix} | ||
+ | </tex> <br /> | ||
+ | '''Дано''' <br /> | ||
${x_1, . . . , x_l} ⊂ X$ {{---}} обучающая выбока (англ. ''training sample set'') <br /> | ${x_1, . . . , x_l} ⊂ X$ {{---}} обучающая выбока (англ. ''training sample set'') <br /> | ||
$y_i = y(x_i), i = 1, . . . , l $ {{---}} известные ответы <br /> | $y_i = y(x_i), i = 1, . . . , l $ {{---}} известные ответы <br /> | ||
− | + | '''Найти''' <br /> | |
Найти $ a ∶ X → Y $ {{---}} алгоритм, решающую функцию (англ. '''decision function'''), приближающую $y$ на всём множестве $X$. | Найти $ a ∶ X → Y $ {{---}} алгоритм, решающую функцию (англ. '''decision function'''), приближающую $y$ на всём множестве $X$. | ||
Версия 05:42, 24 января 2019
Содержание
- 1 Понятие машинного обучения в искусственном интеллекте
- 2 Задача обучения
- 3 Классификация задач машинного обучения
- 3.1 Обучение с учителем (англ. Supervised learning)
- 3.2 Обучение без учителя (англ. Unsupervised learning)
- 3.3 Обучение с частичным привлечением учителя (англ. Semi-supervised learning)
- 3.4 Обучение с подкреплением (англ. Reinforcement learning)
- 3.5 Активное обучение (англ. Active learning)
- 3.6 Обучение в реальном времени (англ. Online learning)
- 3.7 Структурное предсказание (англ. Structured prediction)
- 3.8 Выбор модели и валидация (англ. Model selection and validation)
- 4 Примеры задач
- 5 См. также
- 6 Примечания
- 7 Источники информации
Понятие машинного обучения в искусственном интеллекте
Определение: |
Машинное обучение (англ. Machine learning) — процесс, который даёт возможность компьютерам обучаться выполнять что-то без явного написания кода. |
A.L. Samuel "Some Studies in Machine Learning Using the Game of Checkers" (IBM Journal. July 1959. P. 210–229)
Определение: |
Говорят, что компьютерная программа учится на опыте $E$ относительно некоторой задачи $T$ и некоторой меры производительности $P$, если ее производительность на $T$, измеренная $P$, улучшается с опытом $E$. |
T.M. Mitchell "Machine Learning" (McGraw-Hill, 1997)
Задача обучения
$X$ — множество объектов (англ. object set, or input set)
$Y$ — множество ответов (англ. label set, or output set)
$y ∶ X → Y$ — неизвестная зависимость (англ. unknown target function (dependency))
Компьютер всегда имеет дело с признаковым описанием объектов. Например: пациента можно описать признаками: имя, возраст, номер полиса, жалобы, давление, температура, результаты анализов.
$f_j∶ X → D_j,j = 1, ... , n$ — признаки (англ. features, or attributes).
Типы признаков:
- бинарный (binary): $D_j = {0, 1}$
- номинальный (categorical): $D_j$ конечно
- упорядоченный (ordinal): $D_j$ конечно и упорядоченно
- количественный (numerical): $D_j = \mathbb{R}$
Объект представляется как набор признаков $(f_1(x),... ,f_n(x))$. Данные обычно представляются в виде матрицы объектов-признаков
Дано
${x_1, . . . , x_l} ⊂ X$ — обучающая выбока (англ. training sample set)
$y_i = y(x_i), i = 1, . . . , l $ — известные ответы
Найти
Найти $ a ∶ X → Y $ — алгоритм, решающую функцию (англ. decision function), приближающую $y$ на всём множестве $X$.
Классификация задач машинного обучения
- Обучение с учителем (англ. Supervised learning)
- Обучение без учителя (англ. Unsupervised learning)
- Обучение с частичным привлечением учителя (англ. Semi-supervised learning)
- Обучение с подкреплением (англ. Reinforcement learning)
- Активное обучение (англ. Active learning)
- Обучение в реальном времени (англ. Online learning)
- Структурное предсказание (англ. Structured prediction)
- Выбор модели и валидация (англ. Model selection and validation)
Обучение с учителем (англ. Supervised learning)
Обучение без учителя (англ. Unsupervised learning)
Обучение с частичным привлечением учителя (англ. Semi-supervised learning)
Обучение с подкреплением (англ. Reinforcement learning)
Активное обучение (англ. Active learning)
Обучение в реальном времени (англ. Online learning)
Структурное предсказание (англ. Structured prediction)
Выбор модели и валидация (англ. Model selection and validation)
Примеры задач
Supervised learning A set of examples with answers is given. A rule for giving answers for all possible examples is required: • classification; • regression; • learning to rank; • forecasting.
Unsupervised learning
A set of examples without answers is given.
A rule for finding answers or some
regularity is required:
• clustering;
• association rules learning;
• recommender systems*;
• dimension reduction**.
How are the objects described? f j ∶ X → D j , j = 1, ... , n are features or attributes. Feature types: • binary: D j = 0, 1 ; • categorical: D j is finite; • ordinal: D j is finite and ordered; • numerical: D j = R.
См. также
Примечания
Источники информации
- Wiki $-$ Машинное обучение
- Курс К.В.Воронцова