Логистическая регрессия — различия между версиями
(→Источники информации) |
Evaleria (обсуждение | вклад) м (→Описание) |
||
Строка 4: | Строка 4: | ||
Логистическая регрессия применяется для прогнозирования вероятности возникновения некоторого события по значениям множества признаков. Для этого вводится зависимая переменная $y$, принимающая значения $0$ и $1$ и множество [[Независимые случайные величины|независимых]] переменных <tex>x_1, ... x_n</tex> на основе значений которых требуется вычислить вероятность принятия того или иного значения зависимой переменной. | Логистическая регрессия применяется для прогнозирования вероятности возникновения некоторого события по значениям множества признаков. Для этого вводится зависимая переменная $y$, принимающая значения $0$ и $1$ и множество [[Независимые случайные величины|независимых]] переменных <tex>x_1, ... x_n</tex> на основе значений которых требуется вычислить вероятность принятия того или иного значения зависимой переменной. | ||
− | Итак, пусть объекты задаются $n$ | + | Итак, пусть объекты задаются $n$ числовыми признаками $f_j : X \to R, j = 1 ... n$ и пространство признаковых описаний в таком случае $X = R^n$. Пусть $Y$ $-$ конечное множество меток классов и задана обучающая выборка пар «объект-ответ» <tex>X^m = \{(x_1,y_1),\dots,(x_m,y_m)\}.</tex> |
Рассмотрим случай двух классов: $Y = \{-1, +1\}$. В логистической регрессии строится линейный алгоритм классификации $a: X \to Y$ вида | Рассмотрим случай двух классов: $Y = \{-1, +1\}$. В логистической регрессии строится линейный алгоритм классификации $a: X \to Y$ вида | ||
Строка 15: | Строка 15: | ||
<center><tex>\mathbb{P}\{y|x\} = \sigma\left( y \langle x,w \rangle\right),\;\; y\in Y</tex></center> | <center><tex>\mathbb{P}\{y|x\} = \sigma\left( y \langle x,w \rangle\right),\;\; y\in Y</tex></center> | ||
где $\sigma(z) = \frac1{1+e^{-z}}$ — сигмоидная функция. | где $\sigma(z) = \frac1{1+e^{-z}}$ — сигмоидная функция. | ||
+ | |||
== Обоснование == | == Обоснование == | ||
'''С точки зрения [[Байесовский классификатор|байесовского классификатора]]''' | '''С точки зрения [[Байесовский классификатор|байесовского классификатора]]''' |
Версия 18:43, 24 января 2019
Логистическая регрессия (англ. logistic regression) — метод построения линейного классификатора[на 23.01.19 не создан], позволяющий оценивать апостериорные вероятности принадлежности объектов классам.
Содержание
Описание
Логистическая регрессия применяется для прогнозирования вероятности возникновения некоторого события по значениям множества признаков. Для этого вводится зависимая переменная $y$, принимающая значения $0$ и $1$ и множество независимых переменных на основе значений которых требуется вычислить вероятность принятия того или иного значения зависимой переменной.
Итак, пусть объекты задаются $n$ числовыми признаками $f_j : X \to R, j = 1 ... n$ и пространство признаковых описаний в таком случае $X = R^n$. Пусть $Y$ $-$ конечное множество меток классов и задана обучающая выборка пар «объект-ответ»
Рассмотрим случай двух классов: $Y = \{-1, +1\}$. В логистической регрессии строится линейный алгоритм классификации $a: X \to Y$ вида
где $w_j$ $-$ вес $j$-го признака, $w_0$ $-$ порог принятия решения, $w=\left(w_0, ..., w_n\right)$ $-$ вектор весов, $\left<x, w\right>$ $-$ скалярное произведение признакового описания объекта на вектор весов. Предполагается, что искусственно введён нулевой признак: $f_{0}(x)=-1$.
Задача обучения линейного классификатора заключается в том, чтобы по выборке $X^m$ настроить вектор весов $w$. В логистической регрессии для этого решается задача минимизации эмпирического риска с функцией потерь специального вида:После того, как решение $w$ найдено, становится возможным не только вычислять классификацию $a(x) = \mathrm{sign}\langle x,w \rangle$ для произвольного объекта $x$, но и оценивать апостериорные вероятности его принадлежности классам:
где $\sigma(z) = \frac1{1+e^{-z}}$ — сигмоидная функция.
Обоснование
С точки зрения байесовского классификатора
Наиболее строгое обоснование логистической регрессии опирается на следующую теорему
Теорема: |
Пусть
Тогда
|
Доказательство: |
Рассмотрим отношение апостериорных вероятностей классов и воспользуемся тем, что $p_y(x)$ — экспонентные плотности с параметрами $\theta_y$ и $\delta$: где $\mathrm{P}_+$ $-$ априорные вероятности, $p_+(x)$ $-$ функции правдоподобия $w=c_+(\delta)\theta_+-c_-(\delta)\theta_- = const(x)$ Здесь вектор $w$ не зависит от $x$ и является вектором свободных коэффициентов при признаках. Все слагаемые под экспонентой, не зависящие от $x$, можно считать аддитивной добавкой к коэффициенту при константном признаке. Поскольку свободные коэффициенты настраиваются по обучающей выборке, вычислять эту аддитивную добавку нет никакого смысла, и её можно включить в $\langle w, x\rangle$. Следовательно, Используя формулу полной вероятности выразим апостериорные вероятности Объединяя эти два равенства в одно, получаем требуемое: Разделяющая поверхность в байесовском решающем правиле определяется уравнением которое равносильно |
Пример кода для scikit-learn
Классификатор sklearn.linear_model.LogisticRegression имеет несколько параметров, например:
- solver $-$ алгоритм, использующийся для оптимизации
- multi_class $-$ классификация на 2 или много классов
- Импортируем нужные библиотеки
from sklearn.linear_model import LogisticRegression from sklearn import datasets from sklearn.model_selection import train_test_split
- Выберем тренировочное и тестовое множества
iris = datasets.load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
- Обучение
clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial') model = clf.fit(X_train, y_train)
- Предсказание
y_pred = model.predict(X_test) model.score(X_test, y_test)
См. также
- Байесовская классификация
- Линейная регрессия
- Вариации регрессии
- Обзор библиотек для машинного обучения на Python
- Общие понятия
- Уменьшение размерности
Источники информации
- Логистическая регрессия $-$ курс лекций Воронцова
- Logistic regression $-$ Wikipedia
- sklearn.linear_model.LogisticRegression $-$ реализация алгоритма на scikit-learn.org